基于动态事件驱动的多智能体系统预测控制
CSTR:
作者:
作者单位:

1.北京理工大学自动化学院;2.北京理工大学机电学院

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目61433003 , 60904003 , 11602019 . 国防科技重点实验室基金项目6142208200308.


Dynamic event-triggered-based predictive control of multi-agent systems
Author:
Affiliation:

Beijing Institute of Technology

Fund Project:

This work is supported by the National Science Foundation of China under grants 61433003 , 60904003 , 11602019 . This work is also funded by Science and Technology on Space Intelligent Control Laboratory, 6142208200308.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对一类具有时变时延和非周期性拒绝服务(denial-of-service, DoS)攻击的离散时间线性多智能体系统, 本文提出一种基于动态事件驱动的预测控制方案. 通过引入网络化预测控制方法,该方案可有效地降低时变时延和非周期性DoS攻击对系统性能造成的负面影响. 此外, 各智能体的传感器侧均设计动态事件驱动控制机制,以减少各智能体反向通道的数据传输频率, 从而节约系统的网络资源消耗. 随后给出闭环多智能体系统渐近稳定且输出实现一致的充要条件. 最后通过数值仿真结果验证所提方案的有效性和正确性.

    Abstract:

    For a class of discrete-time linear multi-agent systems subject to time-varying delays and aperiodic denial-of-service (DoS) attacks, a dynamic event-triggered-based predictive control scheme is proposed in this article. The proposed scheme can effectively reduce the adverse impacts of time-varying delays and aperiodic DoS attacks on system performance by introducing the networked predictive control approach. Moreover, the dynamic event-triggered control mechanism is designed on the sensor side of each agent to reduce the data transmission frequency in the feedback channel of each agent, thereby saving the network resource consumption of the system. Subsequently, the sufficient and necessary conditions to guarantee asymptotic stability and to achieve output consensus of closed-loop multi-agent system are given. In the end, the effectiveness and correctness of the proposed scheme are verified by the numerical simulation results.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-25
  • 最后修改日期:2024-07-25
  • 录用日期:2024-01-30
  • 在线发布日期: 2024-04-08
  • 出版日期:
文章二维码