基于双层交互Q学习的路网抢修和物资配送联合调度
CSTR:
作者:
作者单位:

合肥工业大学

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

安徽省重点研究与开发计划202104d07020001,安徽省自然科学基金面上项目2208085MF166,中央高校基本科研业务费PA2023IISL0097,PA2023GDSK0049.


Joint scheduling of road network restoration and emergency relief supplies delivery based on double-layer interactive Q-learning
Author:
Affiliation:

Hefei University of Technology

Fund Project:

Anhui Provincial Key Research and Development Programme 202104d07020001, Anhui Provincial Natural Science Foundation Facial Project 2208085MF166, Central Universities Fundamental Scientific Research Operating Expenses PA2023IISL0097, PA2023GDSK0049.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    受损路网修复和物资配送是灾后应急响应初期的两个重要环节, 主要研究如何制定道路抢修队和物资运输队的联合调度方案. 然而, 已有研究大都将路网修复和物资配送割裂开来考虑, 难以满足实际救援需求. 为此, 本文在构建抢修队与运输队联合调度的路网模型的基础上, 引入马尔科夫决策过程来模拟抢修队的修复活动和运输队的救援活动, 分别设计了相应的状态、动作集和即时奖励函数. 最后提出一种基于双层交互Q学习的路网抢修和物资配送联合调度算法. 对比实验表明, 本文所提方法能有效提高路网抢修和物资配送的效率, 可为应急响应初期的救援与处置提供及时可靠的物资保障.

    Abstract:

    Road network restoration and emergency relief supplies delivery are two important aspects in the early stages of post-disaster emergency response. The main focus is on developing a joint scheduling plan for repair crews and transportation teams, so as to quickly connect life rescue routes and ensure that rescue personnel, emergency relief supplies, and equipments can be delivered to various demand points in the disaster area in a timely manner. However, most existing studies have considered road network restoration and emergency relief supplies delivery separately, making it difficult to meet the actual needs of emergency rescue and disposal. In this work, a road network model for joint scheduling of repair crews and transportation teams is first constructed. Next, the Markov decision process is adopted to simulate the activities of repair crews and transportation teams, in which the corresponding state spaces, action spaces, and reward functions are designed, respectively. Then, a joint scheduling algorithm for road network restoration and emergency relief supplies delivery is developed on the basis a customised double-layer interactive Q-learning. Finally, comparative experiments demonstrate that the proposed algorithm can improve the efficiency and effectiveness of road network restoration and emergency relief supplies delivery, and provide timely and reliable emergency relief supplies support for the rescue and disposal in the early stages of post-disaster emergency response.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-28
  • 最后修改日期:2024-07-01
  • 录用日期:2024-03-11
  • 在线发布日期: 2024-04-08
  • 出版日期:
文章二维码