基于稀疏注意力的孪生网络目标跟踪算法
CSTR:
作者:
作者单位:

燕山大学

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Siamese Network Object Tracking Algorithm Based on Sparse Attention
Author:
Affiliation:

Yanshan University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文利用改进的Inception-Resnet-V2(IRV2)网络和局部-全局-局部(Local-Global-Local, LGL)模块设计一种结合CNN和Transformer编码结构的孪生网络用于目标跟踪——SiamLGL(Siamese Local-Global-Local Network)。首先,算法特征提取部分采用改进后的Inception-Resnet-V2(IRV2)网络,由于网络的层数更深,因此图片经过IRV2网络提取的特征较浅层网络提取的特征效果更优,特征融合部分采用深度互相关将特征图上的信息进行融合。其次,融合后的特征图利用LGL模块获取目标的全局和局部信息,模块内部采用两个编码器串联,第一个编码器利用深度可分离卷积获取目标的局部信息,第二个编码器利用自注意力获取图片的全局特征。为了降低自注意力结构的时间复杂度,采用稀疏注意力的方式进行计算,在降低时间复杂度的同时保证网络的精度。最后将特征图输入至分类回归网络中,生成对应的目标位置。其中分类网络采用二元交叉熵损失函数,回归网络采用Distance-IoU(DIoU)作为损失函数。本文算法在GOT-10k、LaSOT、TrackingNet、UAV123、OTB100和VOT2019等6个公开数据集上进行试验评估,实验结果验证了算法的有效性。

    Abstract:

    In this paper, an improved Inception-Resnet-V2 (IRV2) network and Local-Global-Local (LGL) module are used to design a siamese network structure based on CNN and Transformer coding structure for object tracking-SiamLGL (Siamese Local-Global-Local Network). Firstly, Due to the improved Inception-Resnet-V2(IRV2) network with deep layers, the features extracted by the IRV2 network in the images are better than those extracted by the shallow network. Furthermore, the information on the feature map is fused through deep intercorrelation. Secondly, the fused feature map uses the Local-Global-Local (LGL) module to obtain the global and local information of the object, and two encoder layers are used in series inside the module, the first encoder layer with depth-separable convolution obtain the local information of the object, and the second encoder layer with self-attention obtain the global features of the picture. In order to reduce the time complexity of the self-attention structure, the sparse attention approach is used for the computation, which ensures the accuracy of the network while reducing the time complexity. Finally, the feature map is input to the classification and regression network to generate the corresponding object location. The classification network adopts the binary cross entropy loss function, and the regression network adopts Distance-IoU (DIoU) as the loss function. The algorithm is evaluated on six public datasets : GOT-10k, LaSOT, TrackingNet, UAV123, OTB100 and VOT2019. The experimental results verify the effectiveness of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-22
  • 最后修改日期:2024-03-17
  • 录用日期:2024-01-16
  • 在线发布日期: 2024-02-02
  • 出版日期:
文章二维码