一种基于成员选择的簇加权聚类集成算法
CSTR:
作者:
作者单位:

1.盐城工学院;2.计算机网络和信息集成教育部重点实验室(东南大学)

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:

国家自然科学基金资助项目(No. 62076215;No. 62301473);中央高校基本科研业务费专项资金(K93-9-2022-03);江苏省高等教育厅面上项目(No. 23KJB520039);江苏省网络与信息安全重点实验室(BM2003201); 江苏高 校“青蓝工程” ;盐城市基础研究计划项目(No.YCBK2023008);盐城工学院研究生培养创新工程项目(SJCX23_XY060)


A Cluster-Weighted Clustering Ensemble Algorithm Based on Member Selection
Author:
Affiliation:

1.Yancheng Institute of Technology;2.Key Laboratory of Computer Network and Information Integration, Ministry of Education (Southeast University))

Fund Project:

National Natural Science Foundation of China(62076215, 62301473); Special Fund for Basic Scientific Research Business Funds of Central Universities(K93-9-2022-03); Jiangsu Provincial Department of Higher Education Project (No. 23KJB520039); Jiangsu Provincial Key Laboratory of Network and Information Security (BM2003201);The

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    聚类集成算法在数据挖掘和模式识别等领域应用广泛. 现有的聚类集成算法虽取得了显著的进展, 但鲜有同时考虑如何处理冗余成员和关注成员内部多样性的算法. 对此, 本文设计了一种簇的不确定性度量指标, 并提出了一种基于成员选择的簇加权聚类集成算法. 首先, 利用平均差异性度量和筛选聚类成员, 并引入信息熵衡量簇的不确定性, 给簇赋予相应的权重? 其次, 在基于成员选择的簇加权共协矩阵和高置信度矩阵的基础上构建增强矩阵? 最后, 在增强矩阵上执行层次聚类算法得到最终的聚类集成结果. 采用多个 UCI 数据集进行实验, 将本文算法与主流的聚类集成算法进行比较, 实验结果表明, 本文所提出的算法可以获得更好的聚类集成效果且本文算法具有较高的鲁棒性、稳定性.

    Abstract:

    Clustering ensemble algorithms are widely used in fields such as data mining and pattern recognition. Although the existing clustering ensemble algorithms have made significant progress, few algorithms that consider how to deal with redundant members and pay attention to the diversity within members at the same time. In this paper, we design an uncertainty metric for clusters, and propose a cluster-weighted clustering ensemble algorithm based on member selection. Firstly, the average difference was used to measure and screen the cluster members, and the uncertainty of the cluster was measured by information entropy, and the corresponding weight was given to the cluster. Secondly, the enhanced matrix was constructed on the basis of the cluster-weighted co-association matrix and the high-confidence matrix based on member selection. Finally, the hierarchical clustering algorithm is executed on the enhancement matrix to obtain the final clustering ensemble result. Experiments are carried out on multiple UCI datasets, and the proposed algorithm is compared with the mainstream clustering ensemble algorithms, and the experimental results show that the proposed algorithm can obtain better clustering integration effect and has high robustness and stability.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-16
  • 最后修改日期:2024-04-20
  • 录用日期:2024-03-15
  • 在线发布日期: 2024-04-08
  • 出版日期:
文章二维码