基于RLANPE的工业过程故障诊断算法研究
CSTR:
作者:
作者单位:

兰州理工大学

作者简介:

通讯作者:

中图分类号:

TP277

基金项目:

国家自然科学基金项目(62263021),甘肃省重点研发计划项目(21YF5GA072,21JR7RA206),


Research on Industrial Process Fault Diagnosis Algorithm Based on RLANPE
Author:
Affiliation:

Lanzhou University of Technology

Fund Project:

National Natural Science Foundation of China (62263021), the Science and Technology Project of Gansu Province (21YF5GA072, 21JR7RA206),

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于邻域保持嵌入(neighborhood preserving embedding, NPE)的故障诊断算法由于其能够有效的提取过程数据的局部信息而被广泛应用,但是典型的NPE方法对参数选择和噪声等离群点敏感,同时忽略了过程数据的全局信息。因此,提出了一种基于鲁棒低秩自适应邻域保持嵌入(robust low rank adaptive neighborhood preserving embedding, RLANPE)的故障诊断算法。该方法将自适应邻域嵌入、投影学习和低秩表示集成到一个框架中,在获得全局最优解的同时能有效提取数据的局部信息;进一步地,为了探索数据的全局信息并减轻异常值的影响,对RLANPE施加了低秩表示约束,以增强RLANPE的特征提取能力和鲁棒性;此外,对RLANPE引入了基于 范数的投影约束,以从复杂的数据中选择最有判别力的特征;最后给出了RLANPE的计算复杂度分析。三个合成数据集验证了所提方法具有好的降维效果和结构保持能力,在田纳西伊斯曼过程中的平均故障检测率可达83.72%,相比对比算法提高了近3%。

    Abstract:

    Fault diagnosis algorithms based on neighborhood preserving embedding (NPE) have been widely used because they can effectively extract local information of the process. However, typical NPE method is sensitive to parameter selection and outliers, while ignoring the global information of process data. Therefore, a fault diagnosis algorithm based on robust low rank adaptive neighborhood preserving embedding (RLANPE) is proposed. This method integrates adaptive neighborhood embedding, projection learning and low rank representation into a framework, which can effectively extract local information of data while obtaining global optimal solution. In order to explore the global information of the data and eliminate the influence of outliers, low rank constraint is imposed on RLANPE to further enhance the information extraction capability. Meanwhile, RLANPE introduces projection constraints based on norm to select the most discriminative features. Finally, the solution process and computational complexity analysis are given. The better dimension reduction performance and structure preservation capability of the proposed method are verified by three synthetic data sets. The average fault detection rate in Tennessee Eastman can reach 83.72%, which is nearly 3% higher than that of the comparison algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-17
  • 最后修改日期:2024-09-07
  • 录用日期:2024-05-09
  • 在线发布日期: 2024-06-05
  • 出版日期:
文章二维码