基于分布式混合贝叶斯网络的煤泥浮选过程安全运行与产品质量一体化控制方法
CSTR:
作者:
作者单位:

1.中国矿业大学;2.东北大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(面上项目61973304, 61873049, 62073060),江苏省六大人才高峰项目(DZXX-045),中央高校基础研究基金(2022ZZCX01K01)


An Integrated Safe Operation and Product Quality Control Method for Coal Slurry Flotation Process Based on Distributed Hybrid Bayesian Network
Author:
Affiliation:

1.China University of Mining and Technology;2.Northeastern University

Fund Project:

National Natural Science Foundation of China [grant numbers 61973304, 61873049, 62073060]; Six Talent Peak of Jiangsu Province [grant numbers DZXX-045]; Fundamental Research Funds for the Central Universities [grant numbers2022ZZCX01K01]

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于生产环境及运行参数等因素的影响,煤泥浮选过程工况波动剧烈,导致产品质量下降,甚至发生异常工况.针对此问题,本文提出一种基于分布式混合贝叶斯网络的煤泥浮选过程安全运行与产品质量一体化控制方法.利用分布式建模思想,深入分析煤泥浮选过程,将其划分为若干相互关联的局部模块并建立相应的局部混合贝叶斯网络模型,进一步结合过程知识和关联变量,确定煤泥浮选过程的全局混合贝叶斯网络模型,有效提升建模的效率和精度.该模型在离散贝叶斯网络的基础上,通过引入连续节点提升控制决策的推理精度.当煤泥浮选过程发生异常工况时,通过贡献图算法识别导致异常工况的局部模块,利用贝叶斯推理获取安全运行控制决策,消除异常工况;在此基础上结合模拟退火算法获取产品质量控制决策,提升产品煤质量,实现煤泥浮选过程的安全运行与产品质量一体化控制.最后,通过煤泥浮选过程仿真实验验证本文所提方法的有效性.

    Abstract:

    Due to the influence of production environment and operating parameters, the coal slurry flotation process experiences significant fluctuations in operating conditions, leading to a decrease in product quality and even occurrence of abnormal conditions. To address this issue, this paper proposes an integrated safe operation and product quality control method for coal slurry flotation process based on distributed hybrid Bayesian network. Based on the distributed modeling idea, the coal slurry flotation process is deeply analyzed, divided into several interrelated local modules and the corresponding local hybrid Bayesian network model is established. The global hybrid Bayesian network model of coal slurry flotation process is further determined by combining process knowledge and associated variables, which effectively improves the efficiency and accuracy of modeling. The model improves the inference accuracy of control decisions by introducing continuous nodes based on discrete Bayesian networks. When abnormal conditions occur in the coal slurry flotation process, the contribution graph algorithm is used to identify the local modules causing the abnormal conditions. Bayesian inference is then employed to obtain safe operation control decisions, eliminating the abnormal conditions. Furthermore, by combining the simulated annealing algorithm on this basis, product quality control decisions are obtained to improve the coal product quality, achieving an integrated control of safe operation and product quality of the coal slurry flotation process. Finally, the effectiveness of the proposed method is validated through simulation experiments of the coal slurry flotation process.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-23
  • 最后修改日期:2024-09-13
  • 录用日期:2024-04-30
  • 在线发布日期: 2024-06-06
  • 出版日期:
文章二维码