新息优先一致分数阶离散GM(1,1)模型及应用
CSTR:
作者:
作者单位:

1.南通大学交通与土木工程学院;2.南通大学交通与土木工程学院,理学院;3.南通大学信息科学技术学院;4.南通大学理学院

作者简介:

通讯作者:

中图分类号:

N941.5

基金项目:

国家自然科学基金项目 面上项目;江苏高校“青蓝工程”项目


New information priority conformable fractional discrete GM(1,1) model and applications
Author:
Affiliation:

1.School of Transportation and Civil Engineering, Nantong University;2.School of Transportation and Civil Engineering/School of Sciences, Nantong University;3.School of Information Sciences and Technology, Nantong University;4.School of Sciences, Nantong University

Fund Project:

National Natural Science Foundation of China, General Program;QingLan Project of Jiangsu Province

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    一致分数阶GM(1,1)(CFGM(1,1))模型是最近提出的一种基于一致分数阶累加的单变量灰色预测模型. 本文研究表明, 一致分数阶累加生成算子不满足灰色预测理论中极其重要的新息优先原则且CFGM(1,1)模型存在从差分方程到微分方程的转换误差. 为此, 提出一种新息优先一致分数阶累加生成算子, 结合离散GM(1,1)模型的思想, 构建了新息优先一致分数阶离散GM(1,1)模型, 从理论上导出了新算子满足新息优先原则的条件, 并用量子粒子群优化算法寻求模型中的最优累加参数. 两个实际案例表明, 新模型不仅能满足新息优先原则, 还可以有效克服CFGM(1,1)模型中的转换误差, 具有更优的拟合和预测精度.

    Abstract:

    The conformable fractional GM(1,1) (CFGM(1,1)) model, which is based on the conformable fractional accumulation, is a recently proposed univariate grey prediction model. It is shows in this paper that the conformable fractional accumulated generating operator does not satisfy the new information priority principle which is extremely important in grey prediction theory. And the CFGM(1,1) model suffers from transformation errors from difference equation to differential equation. To address these two issues, a new information priority conformable accumulated generating operator is proposed. By combining the idea of the discrete GM(1,1) model, a new information priority conformable fractional discrete GM(1,1) model is constructed. The conditions for the novel operator to satisfy the new information priority principle are theoretically derived. Meanwhile, the quantum particle swarm optimization algorithm is adopted to determine the optimal accumulation parameters. Two practical examples demonstrate that the proposed model not only satisfies the new information priority principle but also effectively overcomes the transformation errors in the CFGM(1,1) model, resulting in better fitting and prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-24
  • 最后修改日期:2024-06-30
  • 录用日期:2024-03-05
  • 在线发布日期: 2024-04-08
  • 出版日期:
文章二维码