一种新的轻量化生成对抗网络及其在风电数据插补中的应用
CSTR:
作者:
作者单位:

内蒙古工业大学

作者简介:

通讯作者:

中图分类号:

TM614

基金项目:

国家自然科学基金(62363029,62241309);内蒙古自治区高等学校科学研究项目(NJZY22365);内蒙古自然科学基金(2023LHMS06005, 2022MS06018)


A new lightweight generative adversarial network and its application in wind power data interpolation
Author:
Affiliation:

Inner Mongolia University of Technology

Fund Project:

Project supported by the National Natural Science Foundation of China (No.62363029,No.62241309 ).Inner Mongolia Autonomous Region Higher Education Science Research Project (Project number:NJZY22365); Inner Mongolia Natural Science Foundation (Project number:2023LHMS06005, Project number:No.2022MS06018)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风电场SCADA(Supervisory Control and Data Acquisition)数据在采集传输过程中常遇到的数据丢失问题,提出了一种基于自适应Transformer的轻量化生成对抗网络插补策略(Adaptive Transformer Slim Gain,AT-SGAIN),旨在增强数据完整性。AT-SGAIN通过简化GAIN模型结构、显著提高了计算效率,并采用双判别器结构,分别用于真实数据和生成数据的鉴别,保障了速度提升过程中插补精度的维护。该模型集成了Transformer编码器,增强了对风电数据时间序列特征的捕捉能力,并通过自适应双分支注意力机制,精准调整通道和空间注意力权重,提升了网络对局部信息的敏感度。实验结果证明,该算法在插补后的均方根误差与平均绝对误差分别达到0.047和0.043,相比原GAIN网络,插补精度提升58.31%,插补速度为2776毫秒,处理速度提高19.34%,在多项对比测试中均显著优于现有经典方法。

    Abstract:

    Acquisition (SCADA) data in wind farms, aiming to enhance data integrity. AT-SGAIN simplifies the GAIN model structure, significantly improves computational efficiency, and adopts a dual discriminator structure for distinguishing between real data and generated data, ensuring the maintenance of interpolation accuracy during the speed improvement process. This model integrates a Transformer encoder, enhancing the ability to capture time series features of wind power data. Through an adaptive dual branch attention mechanism, it accurately adjusts channel and spatial attention weights, improving the network"s sensitivity to local information. The experimental results show that the root mean square error and average absolute error of the algorithm after interpolation reach 0.047 and 0.043, respectively. Compared with the original GAIN network, the interpolation accuracy is improved by 58.31%, the interpolation speed is 2776 milliseconds, and the processing speed is improved by 19.34%. In multiple comparative tests, it is significantly better than existing classical methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-06
  • 最后修改日期:2024-09-18
  • 录用日期:2024-04-16
  • 在线发布日期: 2024-05-06
  • 出版日期:
文章二维码