基于自适应鲁棒模糊神经网络的MBR膜透水率软测量
CSTR:
作者:
作者单位:

北京工业大学

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

中国博士后科学基金,国家自然科学基金项目(面上项目,重点项目,重大项目), 国家重点研发项目, 北京市自然科学基金, 北京市博士后工作经费资助项目, 青年北京学者项目


Soft-sensor method for permeability of membrane bio-reactor based on adaptive robust fuzzy neural network
Author:
Affiliation:

Beijing University of Technology

Fund Project:

China Postdoctoral Science Foundation,The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan), National Key R&D Projects, Beijing Natural Science Foundation, Beijing Postdoctoral Work Funding Program, Young Beijing Scholars Program, Beijing National Key R&D Projects, Beijing Natural Science Foundation, Beijing Postdoctoral Work Funding Program

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对膜生物反应器(membrane bio-reactor, MBR)污水处理工艺易受到进水水量、水质波动等外部干扰因素的影响导致膜透水率难以准确测量的问题,提出了一种基于自适应鲁棒模糊神经网络(adaptive robust fuzzy neural network, ARFNN)的膜透水率软测量模型。首先,构建了一种对称抗噪损失函数,降低了模型对外部干扰的敏感度,提高了软测量模型的鲁棒性;然后,设计了一种自适应梯度下降算法,动态优化模型参数,提升了软测量模型的检测精度;最后,利用李雅普诺夫函数验证了ARFNN的收敛性,分析了模型的鲁棒性,保证了模型的收敛速度和抗干扰能力。将所设计的基于ARFNN的膜透水率软测量模型应用于实际的污水处理过程中,实验结果表明,在有外部干扰的情况下,该模型不但能够实现膜透水率的在线检测,而且可以获得较高的检测精度。

    Abstract:

    Aiming at the problem that the membrane bio-reactor (MBR) wastewater treatment process is susceptible to the influence of external disturbances such as influent water quantity and water quality fluctuations, which makes it difficult to accurately measure the membrane permeability, a soft-sensor method for permeability of membrane based on the adaptive robust fuzzy neural network (ARFNN) is proposed. A soft-sensor method for membrane water permeability based on an adaptive robust fuzzy neural network (ARFNN) is proposed. Firstly, a symmetric anti-noise loss function is constructed to reduce the sensitivity of the model to external interference and improve the robustness of the soft measurement model; then, an adaptive gradient descent algorithm is designed to dynamically optimize the model parameters and improve the detection accuracy of the soft measurement model; finally, the convergence of ARFNN is verified by using the Lyapunov function to analyze the model"s robustness, which ensures the model"s convergence speed and anti-interference ability. The designed ARFNN-based membrane permeability soft-sensor method is applied to the actual wastewater treatment process, and the experimental results show that the model can not only realize the online detection of membrane permeability but also obtain high detection accuracy under the condition of external interference.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-14
  • 最后修改日期:2024-04-08
  • 录用日期:2024-04-16
  • 在线发布日期: 2024-06-05
  • 出版日期:
文章二维码