基于仿生算法的多式联运路径规划方法综述
CSTR:
作者:
作者单位:

南京邮电大学

作者简介:

通讯作者:

中图分类号:

U15, TP18

基金项目:

智能网联车环境下异质交通流机理建模及路网车路协同控制方法研究


Bio-Inspired Optimization-Based Path Planning Algorithms in Multimodal Transportation:A Survey
Author:
Affiliation:

Nanjing University of Posts and Telecommunications

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多式联运可有效提高物流企业的运作效率并降低经营成本,是现代物流的未来发展趋势之一。然而其路径规划问题常常存在许多非线性约束,传统的精确算法在求解时也面临着模糊性、特殊性、动态性、高维性等挑战。鉴于仿生算法模拟生物系统时的智能优势在解决这一类复杂组合优化问题时具备广泛性和高效性。本文研究了近年来基于多式联运路径规划的仿生算法,并将其分为三类:群智能算法、进化算法和基于物理的仿生算法,总结了多式联运路径规划问题的特殊背景、关键特征和未来研究方向,广泛对比、分析了该问题下各仿生算法的原理、改进、优点和局限性,为问题的特殊场景提供合适的仿生算法。最后,讨论了多式联运路径规划问题面临的挑战和未来的研究趋势。

    Abstract:

    Multimodal transportation can effectively improve the operation efficiency of logistics enterprises and reduce the operating costs, which is one of the future development trends of modern logistics. However, there are many nonlinear constraints on the path planning problems, and the traditional accurate algorithm also faces challenges such as ambiguity, particularity, dynamism and high dimensionality. Given the intelligent advantages of bio-inspired algorithms in simulating biological systems, they are extensive and highly efficient in solving this kind of complex combinatorial optimization problems. This paper studies the bio-inspired algorithms based on multimodal transportation path planning in recent years, and divides it into three categories: swarm intelligent algorithms, evolution algorithms and the physics-based bio-inspired algorithms, summarizes the special background, key features and future research direction, widely compare, analyzes the principle, improvement, advantages and limitations, provides the appropriate bio-inspired algorithms for the special scenarios. Finally, the challenges and future research trends are discussed.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-19
  • 最后修改日期:2024-07-20
  • 录用日期:2024-05-07
  • 在线发布日期: 2024-06-04
  • 出版日期:
文章二维码