基于改进瞪羚优化算法的 UWSN 三维定位算法
CSTR:
作者:
作者单位:

广东海洋大学

作者简介:

通讯作者:

中图分类号:

TB393

基金项目:

广东省普通高校重点领域新一代信息技术专项(2020ZDZX3008);广东省人工智能领域重点专项(2019KZDZX1046)


UWSN 3D Localization Algorithm Based on Improved Gazelle Optimization Algorithm
Author:
Affiliation:

GUANGDONG OCEAN UNIVERSITY

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决三维空间中的水下无线传感器网络(Underwater Wireless Sensor Networks, UWSN)传统DV-Hop算法定位误差大的问题,提出一种基于改进瞪羚优化算法(Improved Gazelle Optimization Algorithm, IGOA)的UWSN三维定位算法(IGOADV-Hop).首先,通过双通信半径修正节点跳数,对锚节点之间的距离误差进行加权修正.其次,在瞪羚优化算法引入Logistic映射初始化种群,增加种群多样性,然后在开发阶段引入位置更新动态权重系数,提升节点位置计算的全局寻优能力.最后使用IGOA替代最小二乘法进行节点三维坐标计算,并在网络中加入移动节点和水下噪声构建动态UWSN.仿真实验结果表明,与传统DV-Hop算法和其他群智能优化算法相比,所提算法定位精度更高.

    Abstract:

    To address the issue of large positioning errors in the traditional DV-Hop algorithm for Underwater Wireless Sensor Networks (UWSN) in three-dimensional spaces, an improved Gazelle Optimization Algorithm based three-dimensional positioning algorithm for UWSN (IGOADV-Hop) is proposed. Firstly, the node hops are corrected through dual communication radii, and the distance error between anchor nodes is weighted and corrected. Secondly, the Logistic mapping is introduced into the Gazelle Optimization Algorithm to initialize the population, increasing population diversity. Then, a dynamic weight coefficient for position updating is introduced in the exploitation stage to improve the global optimization ability of node position calculation. Finally, IGOA is used to replace the least squares method for calculating the three-dimensional coordinates of nodes, and dynamic UWSN is constructed by adding mobile nodes and underwater noise to the network. Simulation results show that compared with the traditional DV-Hop algorithm and other swarm intelligence optimization algorithms, the proposed algorithm has higher positioning accuracy.

    参考文献
    相似文献
    引证文献
引用本文

付雷,王骥.基于改进瞪羚优化算法的 UWSN 三维定位算法[J].控制与决策,2025,40(1):80-86

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-19
  • 最后修改日期:2024-06-14
  • 录用日期:2024-03-26
  • 在线发布日期: 2024-04-07
  • 出版日期:
文章二维码