基于联邦学习的海上分布式光伏超短期功率预测
CSTR:
作者:
作者单位:

1.东北大学;2.南京邮电大学

作者简介:

通讯作者:

中图分类号:

TM615

基金项目:

国家自然科学基金项目(62173080);国家自然科学基金重点项目(U22B20115)


Ultra-short-term Power Prediction of Offshore Distributed PV Based on Federated Learning
Author:
Affiliation:

1.Northeastern University;2.Nanjing University of Posts and Telecommunications

Fund Project:

The National Natural Science Foundation of China (62173080);The National Natural Science Foundation of China (U22B20115)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    功率预测是实现电能供需平衡、维持电网稳定运行的一项重要任务。随着分布式海上光伏系统的发展,光伏利用率不断提升,同时对光伏功率预测提出了更高的要求。针对机器学习方法在光伏功率时间序列预测中存在的样本数量不足、预测精度低以及隐私泄露等问题,本文提出一种基于联邦学习和变分模态分解的长短期记忆神经网络功率预测模型(FL-VMD-LSTM)。利用主成分分析法(PCA)和三次样条插值对气象数据进行预处理,同时利用VMD将光伏功率时间序列分解为多个分量进行分步预测,降低光伏功率时间序列的非平稳性和复杂度。通过横向联邦学习的本地训练和参数聚合方法,实现在保证数据隐私安全情况下的光伏功率预测。通过四个算例进行仿真实验,验证结果表明FL-VMD-LSTM模型在光伏功率预测方面具有较高精度,与传统算法相比RMSE和MAE分别降低了55.7%和55.5%。

    Abstract:

    Power prediction is an important task to achieve the balance of power supply and demand and maintain the stable operation of the power grid. With the development of distributed offshore photovoltaic systems, the utilization rate of photovoltaic is constantly increasing, and higher requirements are put forward for photovoltaic power prediction. In view of the problems such as insufficient sample number, low prediction accuracy and privacy disclosure existing in the photovoltaic power time series prediction by machine learning methods, In this paper, a long-short-term memory neural network power prediction model (FL-VMD-LSTM) based on federated learning and variational mode decomposition is proposed. Principal component analysis (PCA) and cubic spline interpolation are used to preprocess meteorological data. Meanwhile, VMD is used to decompose photovoltaic power time series into multiple components for step-by-step prediction. By reducing the non-stationary and complexity of PV power time series, local training and parameter aggregation methods of horizontal federated learning are used to achieve PV power prediction under the condition of ensuring data privacy and security. Simulation experiments are carried out through four examples, and the verification results show that the FL-VMD-LSTM model has high accuracy in PV power prediction, and the RMSE and MAE are reduced by 55.7% and 55.5%, respectively, compared with the traditional algorithm.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-27
  • 最后修改日期:2024-08-30
  • 录用日期:2024-06-02
  • 在线发布日期: 2024-07-04
  • 出版日期:
文章二维码