基于前景理论的多阶段多情景多部门应急决策的矩阵方法研究
CSTR:
作者:
作者单位:

1.山东大学;2.山东师范大学

作者简介:

通讯作者:

中图分类号:

C934

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on the matrix approach for multi-stage, multi-scenario, and multi-department emergency decision-making based on prospect theory
Author:
Affiliation:

Shandong University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对一类多阶段多情景多部门应急决策过程, 考虑心理偏好及多部门协同, 基于前景理论构建指标情景值矩阵和综合情景值矩阵等新矩阵, 提出恒定区间下的应急决策矩阵方法, 对事态发展进行全方面评估, 以实现科学高效决策. 本文给出前景值计算的矩阵形式, 使其可程序化, 能够有效应对突发事件多阶段的动态性(部门变动和方案变动), 提升决策效率. 恒定区间的引入描述了决策者的心理承受能力, 并进一步讨论恒定区间正负变化的影响以优化应急决策流程. 例如, 当承受能力增加时, 虽不改变各方案情景值的大小关系, 但可能影响最优方案的选择, 而某些情形下却不影响. 最后针对某化工厂实例进行分析, 证实该矩阵方法的有效性, 对处理这类应急决策具有较好的应用价值.

    Abstract:

    This article addresses a class of multi-stage, multi-scenario, multi-department emergency decision-making processes, considering psychological preferences and interdepartmental collaboration. Based on prospect theory, some new matrices such as indicator scenario value matrices and comprehensive scenario value matrices are constructed. Under the framework of constant interval, an emergency decision-making matrix method is proposed to evaluate developments in a comprehensive manner, thereby achieving scientific and efficient decision-making. The article presents the matrix form of prospect value calculation, making it programmable to effectively cope with the dynamics of multi-stage emergencies(departmental and scenario changes), thus enhancing decision-making efficiency. The constant interval is introduced to describe the psychological tolerance of decision-makers, and the influence of positive and negative changes in the constant interval is further discussed to optimize the emergency decision-making process. For example, when the tolerance increases, although it does not change the relationship between the magnitude values of each scenario, it may affect the choice of the optimal solution, while in certain situations, it does not have an effect. Finally, an analysis of a chemical plant case study confirms the effectiveness of this matrix method and demonstrates its valuable application in handling such emergency decision-making situations.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-09
  • 最后修改日期:2024-05-07
  • 录用日期:2024-05-09
  • 在线发布日期: 2024-06-04
  • 出版日期:
文章二维码