基于探采平衡的双搜索模式人工蜂群算法及其应用
CSTR:
作者:
作者单位:

郑州轻工业大学

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金联合基金重点支持项目;中原千人计划;河南省科技攻关项目


Dual search mode artificial bee colony algorithm based on exploration-exploitation tradeoff and its application
Author:
Affiliation:

Zhengzhou University of Light Industry

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人工蜂群算法具有结构简单、易于实现等优点,但由于其探索能力较强而开采能力较弱,同时也存在求解精度较低和收敛速度较慢等不足之处。针对上述问题,本文提出一种基于探采平衡的双搜索模式人工蜂群算法,包含探采控制、探采执行和探采强化三个核心模块。在探采控制阶段,根据种群以探索为主并逐渐偏向开采的演化规律设计探采指标。在探采执行阶段,根据探索与开采的实现要点设计基于差异解信息引导的搜索方程。在探采强化阶段,令跟随蜂分别按照多样性排序和目标值排序选择优质食物源继续搜索。选取传统测试函数和CEC2013测试函数进行数值实验,并与八种近年来提出的高水平人工蜂群算法进行对比,结果表明本文算法在解质量和收敛速度等方面有较强的竞争力。最后,将本文算法用于食管癌发病风险预测模型优化,获得了满意的结果。

    Abstract:

    The artificial bee colony algorithm has the advantages of a simple structure and easy implementation. However, due to its strong exploration ability and weak exploitation capability, it also suffers from drawbacks such as low solution accuracy and slow convergence speed. To solve these problems, this paper proposes a dual search mode artificial bee colony algorithm based on exploration-exploitation tradeoff, which includes three core modules: exploration-exploitation control, exploration-exploitation execution, and exploration-exploitation reinforcement. In the control stage, we design an exploration-exploitation indicator based on the population’s evolutionary dynamics, which initially emphasizes exploration and gradually shifts towards exploitation. In the execution stage, we design search equations guided by differential solution information, with a focus on the implementation points of exploration and exploitation. In the enhancement stage, the onlooker bees are instructed to select high-quality food sources for further search, using criteria such as diversity ranking and fitness ranking. Numerical experiments were conducted on traditional test functions and CEC2013 test functions. The results demonstrated that when compared with eight high-level artificial bee colony algorithms proposed in recent years, the proposed algorithm exhibits strong competitiveness in terms of solution quality and convergence speed. Finally, the proposed algorithm was applied to optimize the risk prediction model for esophageal cancer, yielding satisfactory results.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-12
  • 最后修改日期:2024-08-01
  • 录用日期:2024-04-16
  • 在线发布日期: 2024-05-07
  • 出版日期:
文章二维码