网络攻击下基于高斯混合分布式集员滤波的移动目标跟踪
CSTR:
作者:
作者单位:

安徽理工大学

作者简介:

通讯作者:

中图分类号:

TP13

基金项目:

国家自然科学基金项目


GMM-based Distributed Set-membership Filtering for Moving Target Tracking under Cyber Attacks
Author:
Affiliation:

Anhui University of Science and Technology

Fund Project:

The National Natural Science Foundation of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对网络攻击下无线传感器网络中的目标跟踪,本文构建了一种高斯混合分布式鲁棒集员滤波算法,旨在提高网络恶意攻击下移动目标跟踪的一致性和精确性。该算法可分解为校正/测量更新、聚类融合和预测/时间更新三个步骤:校正/测量更新步是根据传感器采集的测量值更新前一时刻的状态估计(先验估计);聚类融合步是采用高斯混合模型聚类算法对传感器节点估计进行分类,分为信任节点估计和非信任节点估计,非信任节点估计会被忽略而信任节点估计将参与融合;预测/时间更新步是预测目标状态的先验估计,将目标的当前时刻状态估计传递至下一时刻。仿真结果表明:该算法在抵御随机攻击、拒绝服务攻击、虚假数据注入攻击、重放攻击以及混合攻击这五种常见的网络攻击方式下,具有较好的鲁棒性。

    Abstract:

    For target tracking in wireless sensor networks under cyber attacks, this paper presents a Gaussian mixture distributed robust set-membership filtering algorithm, aiming to improve the consistency and accuracy of moving target tracking under malicious cyber attacks. The algorithm can be decomposed into three steps: correction/measurement update step, clustering fusion step and prediction/time update step. The correction/measurement update step is used to update the predicted state estimation (a priori estimation) based on the local measurement. In the clustering fusion step, the available local estimations of sensor nodes are clustered by the Gaussian mixture model clustering algorithm, which are classified into trusted nodes estimations and non-trusted nodes estimations. The non-trusted nodes estimations are ignored while the trusted nodes estimations are used to generate the fused estimation. The prediction/time update step is used for predicting the a priori state estimate of the moving target and pass the current moment state estimate of the target to the next moment. Simulation results show that the proposed algorithm is robust against five common cyber attacks, namely random attacks, denial of service attacks, false data injection attacks, replay attacks and hybrid attacks.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-17
  • 最后修改日期:2024-08-30
  • 录用日期:2024-06-02
  • 在线发布日期: 2024-06-04
  • 出版日期:
文章二维码