区间约束违反度引导的区间约束多目标进化算法
CSTR:
作者:
作者单位:

江苏海洋大学

作者简介:

通讯作者:

中图分类号:

TP312

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


An interval constraint violation degree guided interval constrained multi-objective evolutionary algorithm
Author:
Affiliation:

Jiangsu Ocean University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    区间约束多目标优化问题的目标函数或约束条件中至少有一个含有区间不确定性参数,该问题广泛存在于实际工程应用中. 目前求解该问题的算法非常少, 且实际约束优化问题的可行域往往是间断的. 针对具有间断 可行域的区间约束多目标优化问题, 通过定义区间约束违反度, 给出基于区间的可行性规则, 基于此, 提出一种区间约束违反度引导的区间约束多目标进化算法. 所提出算法以基于分解的区间多目标进化算法为框架, 首先, 采用拉丁超立方体采样在搜索空间中探测可行域, 利用均匀分布的采样点构成初始种群? 然后, 每隔固定进化代数,基于个体的区间约束违反度或区间拥挤距离, 自适应调整参考向量? 接着, 使用双差分变异算子生成新个体, 并基于可行性规则更新邻域个体? 最后, 将所提出算法在构造的具有间断可行域的区间约束多目标基准函数和海岛综合能源系统优化调度问题上进行测试,并与3个区间约束多目标进化算法比较. 实验结果表明,所提出算法具有优越的性能.

    Abstract:

    Interval constrained multi-objective optimization problems (ICMOPs) have at least one objective function or constraint containing interval uncertainty parameters, which is popular in practical engineering applications. There are very few algorithms for solving these problems, and practical constrained optimization problems usually have discontinuous feasible domains. For the ICMOPs with discontinuous feasible domains, a feasibility rule based on intervals is presented by defining the interval-constraint violation degree. Based on this, an interval constrained violation degree guided interval constrained multi-objective optimization algorithm is proposed. This algorithm takes the decomposition-based interval multi-objective evolutionary algorithm as the framework. Firstly, Latin hypercube sampling is utilized to explore feasible domains in the search space, and multiple evenly distributed sampling points constitute an initial population. Then, the reference vector is periodically adaptively adjusted based on the individual’s interval constraint violation degree or interval crowding distance. Finally, the double difference mutation operator is employed to generate new individuals, and the neighborhood individuals are updated based on the feasibility rule. The proposed algorithm is tested on the constructed interval constrained multi-objective benchmark functions with discontinuous feasible domains and an island integrated energy system optimization scheduling problem, and is compared with three interval constrained multi-objective evolutionary algorithms. The experimental results demonstrate that the proposed algorithm has superior performance.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-20
  • 最后修改日期:2024-06-14
  • 录用日期:2024-04-16
  • 在线发布日期: 2024-05-03
  • 出版日期:
文章二维码