基于改进ResNet50和迁移学习的竹片表面缺陷检测方法
CSTR:
作者:
作者单位:

1.中国地质大学(武汉);2.邵阳先进制造技术研究院有限公司

作者简介:

通讯作者:

中图分类号:

TP399

基金项目:


Detection Method of Bamboo Sheets Based on Improved ResNet50 and Transfer Learning
Author:
Affiliation:

1.China University of Geosciences,Wuhan;2.Shaoyang advanced manufacturing technology research institute co., ltd

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在竹片表面缺陷检测中,竹片表面缺陷形状各异,成像环境脏乱,现有基于卷积神经网络(CNN)的 目标检测方法面对这样特定的数据时检测准确率较低;而且竹片来源复杂且有其他条件限制,例如不同季节成 色各异等限制,因此无法采集所有类型的数据,导致竹片表面缺陷数据量少,以至于CNN不能充分学习。针对 以上问题,本文提出了一种改进的ResNet50网络与迁移学习结合的竹片缺陷识别方法。首先,将获得的正负样 本数据按照一定比例分为训练集、验证集和测试集;其次,利用OTSU算法和LBP算法对竹片图像进行二值化 处理和特征提取,以减少噪音影响;最后将ResNet50作为骨干网络加入L2正则化和标签平滑与迁移学习结合, 得到适应于竹片缺陷检测识别的优化模型。将所提检测网络与VGG16、DenceNet121、ResNet50以及目前常用 于工业检测的YOLOv3分别在相同比例训练测试集上进行训练和测试。实验结果表明,所提检测网络的平均精 度均值(mAP)竹片表面缺陷检测数据集上比VGG16、 DenceNet121、 YOLOv3和ResNet50的mAP值分别提高 了23.45、18.6、19.51和2.76个百分点。所提方法能够针对形状各异的竹片表面缺陷进行有效检测,且降低了时 间消耗,在实际工业运用中具有很好的效果。

    Abstract:

    In the detection of bamboo surface defects, bamboo surface defects have different shapes and the imaging environment is messy. The existing target detection methods based on convolutional neural network (CNN) have low detection accuracy when facing such specific data. Moreover, the source of bamboo chips is complex and there are other restrictions, such as different colors in different seasons, so it is impossible to collect all kinds of data, resulting in a small amount of data on bamboo chip surface defects, so that CNN can not fully learn. In view of the above problems, this paper proposes an improved bamboo defect identification method combining ResNet50 network and transfer learning. Firstly, the obtained positive and negative sample data are divided into training set, verification set and test set according to a certain proportion; Secondly, the OTSU algorithm and LBP algorithm are used to binarize the bamboo image and extract its features to reduce the influence of noise. Finally, ResNet50 is used as the backbone network, and L2 regularization, label smoothing and migration learning are combined to obtain an optimized model suitable for bamboo defect detection and recognition. The proposed detection network, VGG16, DenceNet121, ResNet50 and YOLOv3, which are commonly used in industrial detection at present, are trained and tested on the same scale training test set respectively. The experimental results show that the average precision mAP of the proposed detection network is 23.45, 18.6, 19.51 and 2.76 percentage points higher than that of VGG16, DenceNet121, YOLOv3 and ResNet50, respectively. The proposed method can effectively detect the surface defects of bamboo chips with different shapes, and reduce the time consumption, which has a good effect in practical industrial application.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-25
  • 最后修改日期:2024-09-18
  • 录用日期:2024-06-24
  • 在线发布日期: 2024-07-04
  • 出版日期:
文章二维码