摘要:在无人仓库系统中, 解决自动导引车(AGV)间的碰撞、死锁以及路径规划问题至关重要. 鉴于此, 提出一种用Petri网对仓库环境中AGV系统进行建模的方法, 以有效解决AGV运输货物时产生冲突的问题. 在此基础上, 提出一种多智能体深度强化学习AGV路径规划框架, 视AGV路径规划问题为部分可观测马尔可夫决策过程, 将深度确定性策略梯度算法扩展至多智能体系统, 通过设计AGV的观测空间、状态空间、动作空间以及奖励函数来实现Petri网中AGV无冲突路径规划. 在设置奖励函数时加入Petri网触发条件后的反馈, 以极大程度地减少AGV运输货物时拥塞的产生, 增加仓库在规定时间内的送货总量. 此外, 所提出框架将路径分支点设置为智能体, 以有效地应对多个任务起点随机产生以及环境中AGV数量时刻变化的情况, 提升神经网络泛化能力. 仿真实验在AnyLogic软件平台中进行, 通过对比不同AGV规模下的货物运输情况以及奖励函数中有无Petri网条件正负反馈的对照实验, 验证所提出路径规划方法的可行性和有效性.