基于深度学习的三维点云分割综述
CSTR:
作者:
作者单位:

西安工程大学 电子信息学院,西安 710600

作者简介:

通讯作者:

E-mail: lujian@xpu.edu.cn.

中图分类号:

TP391

基金项目:

国家自然科学基金项目(61971339,61471161);陕西省自然科学基金重点项目(2018JZ6002).


A review of deep learning based on 3D point cloud segmentation
Author:
Affiliation:

School of Electronics and Information,Xián Polytechnic University,Xián 710600,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作为三维场景理解的重要技术之一,三维点云分割受到广泛的关注,具有重要的研究价值和广阔的应用前景.基于此,梳理基于深度学习的三维点云分割技术的最新研究进展;在介绍三维点云分割常用的8个室内和室外数据集的基础上,重点阐述和分析现有主要基于深度学习的语义分割、实例分割和部件分割方法,并基于量化数据进行部分方法的效能比较;最后从10个方面总结现有方法的不足,并针对性地提出工作展望.

    Abstract:

    3D point cloud segmentation, as one of the important technology of 3D scene understanding, has aroused people's widespread interest. And it has important research value and broad application prospect. The latest research progress of 3D point cloud segmentation technology based on deep learning is sorted out. Firstly, eight indoor and outdoor common datasets frequently utilized in 3D point cloud segmentation are introduced. Then, the existing semantic segmentation, instance segmntation and part segmentation mainly via deep learning are explained and analyzed in depth, and the effectiveness of some methods is compared baesd on quantitative data. Finally, we summarize the shortcomings of the existing methods from ten aspects, and put forward the work prospects pertinently.

    参考文献
    相似文献
    引证文献
引用本文

卢健,贾旭瑞,周健,等.基于深度学习的三维点云分割综述[J].控制与决策,2023,38(3):595-611

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-17
  • 出版日期: 2023-03-20
文章二维码