基于改进的胶囊网络的行星齿轮箱故障诊断方法
CSTR:
作者:
作者单位:

1. 天津理工大学 天津市先进机电系统设计与智能控制重点实验室,天津 300384;2. 天津理工大学 机电工程国家级实验教学示范中心,天津 300384;3. 电子科技大学 机械与电气工程学院,成都 611731

作者简介:

通讯作者:

E-mail: zoommian@foxmail.com.

中图分类号:

TH17

基金项目:

国家自然科学基金项目(52005370);天津市自然科学基金项目(20JCYBJC00790).


Fault diagnosis method of planetary gearbox based on enhanced capsule network
Author:
Affiliation:

1. Tianjin Key Laboratory of Advanced Mechatronic System Design and Intelligent Control,Tianjin University of Technology,Tianjin 300384,China;2. National Demonstration Center for Experimental Mechanical and Electrical Engineering Education,Tianjin University of Technology,Tianjin 300384,China;3. School of Mechanical and Electrical Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    行星齿轮箱是大型机械装备的核心传动环节,其内部关键零部件故障发生的部位与形式多样,威胁机械装备的安全服役.针对其不同部件的多类故障诊断问题,提出一种基于改进的胶囊网络(enhanced capsule ntwork,ECN)的“端到端”智能故障诊断方法.ECN充分发挥了卷积神经网络对故障特征的深度提取能力,同时具备胶囊结构矢量化挖掘特征空间信息的特点,可利用动态路由机制计算胶囊层之间的相关度,从而实现对故障特征的精准归类.此外,建立的间隔损失函数与输入数据不断优化模型参数,实现了对故障的智能诊断.对太阳轮、行星轮以及多类部件故障数据混合的情况分别开展分析,实验结果表明,ECN相比传统卷积神经网络和胶囊网络均表现出更强的故障诊断能力.

    Abstract:

    Planetary gearboxes(PGs) are the core transmission link of large-scale mechanical equipment. The fault of key components occurring inside a PG usually exhibits in various locations and types, therefore, threatens the security service of mechanical equipment. To this point, an end-to-end intelligent diagnosis strategy based on enhanced capsule network(ECN) is proposed to detect multiple fault types of different components in a PG. The ECN well merits the advantages of the convolution neural network(CNN) and the capsule network(CN), which fully retains spatial information while digging in-depth fault features. The dynamic routing algorithm is used to calculate the correlation between the different capsule layers so as to accurately recognize the fault feature. Furthermore, the ECN continuously optimizes model parameters by the established margin loss functions and the input data. The experimental studies are conducted to demonstrate the effectiveness of the proposed model. The experimental results show that the ECN featured stronger fault diagnosis capabilities than the traditional CNN and CN.

    参考文献
    相似文献
    引证文献
引用本文

黎德才,张冕,王科盛,等.基于改进的胶囊网络的行星齿轮箱故障诊断方法[J].控制与决策,2023,38(3):661-669

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-17
  • 出版日期: 2023-03-20
文章二维码