基于混合虚拟样本生成的铈镨/钕组分含量预测
CSTR:
作者:
作者单位:

1. 华东交通大学 电气与自动化工程学院,南昌 330013;2. 江西省先进控制与优化重点实验室,南昌 330013

作者简介:

通讯作者:

E-mail: ecjtu_rxlu@163.com.

中图分类号:

TP393

基金项目:

国家重点研发计划项目(2020YFB1713700);国家自然科学基金项目(61863014,61733005,61963015).


Prediction method of CePr/Nd component content based on hybrid virtual sample
Author:
Affiliation:

1. College of Electrical and Automation,East China Jiaotong University,Nanchang 330013,China;2. Key Laboratory of Advanced Control and Optimization of Jiangxi Province,Nanchang 330013,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对稀土萃取过程进行质量监控时,存在采集样本重复率高、有效数据少的小样本问题,提出一种基于混合虚拟样本生成的稀土萃取过程组分含量预测方法.首先,以萃取现场的小样本为基础,采用中点插值法生成虚拟样本输出数据,再根据随机配置网络(SCN)中隐含层与输出层、输入层与隐含层间的映射关系,生成虚拟样本输入数据;鉴于这些虚拟样本仅能在邻近点产生,采用结合遗传算法(GA)的多分布趋势扩散技术(MD-MTD)生成优化的虚拟样本集进行补充.依据数据合理性原则,将虚拟样本与真实小样本进行融合,建立基于SCN的组分含量预测模型.铈镨/钕萃取现场数据验证和对比实验分析表明,所提出的方法能有效解决小样本问题,适用于稀土萃取过程组分含量监控.

    Abstract:

    Aiming at the small sample problem of high sample collection repetition rate and low effective data during quality monitoring of rare earth extraction process, a method for predicting component content of rare earth extraction process based on mixed virtual sample generation is proposed. First of all, based on the small sample extracted from the field, the output data of the virtual sample are generated using the midpoint interpolation method. Then, the input data of the virtual sample are generated according to the mapping relationship between the hidden layer of the stochastic configuration network(SCN) and the output layer, the input layer and the hidden layer. In view of the limitation that the virtual sample can only be generated at neighboring points, a multi-distribution trend diffusion technology (MD-MTD) combined with the genetic algorithm (GA) is used to generate an optimized virtual sample set to supplement. According to the principle of data rationality, the virtual sample and the real small sample are merged, and a component content prediction model based on the SCN is established. Through the field data verification and comparative experimental analysis of CePr/Nd extraction, the results show that the proposed method can effectively solve the problem of the small sample, which is suitable for component content monitoring in the rare-earth extraction process.

    参考文献
    相似文献
    引证文献
引用本文

陆荣秀,赖路璐,杨辉,等.基于混合虚拟样本生成的铈镨/钕组分含量预测[J].控制与决策,2023,38(4):1129-1136

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-22
  • 出版日期: 2023-04-20
文章二维码