半结构化场景下移动机器人视觉边线检测综述
CSTR:
作者:
作者单位:

重庆大学 自动化学院,重庆 400044

作者简介:

通讯作者:

E-mail: suxiaojie@cqu.edu.cn.

中图分类号:

TP391.4

基金项目:

国家重点研发计划政府间合作重点专项项目(SQ2019YFE011667);国家自然科学基金项目(62003059);广东省重点领域研发计划项目(2020B0909020001);中国博士后基金项目(2020M673136);重庆市留创计划项目(2205012983768768).


Survey of lane detection for autonomous robots in semi-structured scenarios
Author:
Affiliation:

School of Automation,Chongqing University,Chongqing 400044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    面向机器人自主运动的视觉感知技术是实现机器人与环境交互的关键技术之一,边线作为保证机器人运动安全的一种视觉信息,具有广泛的研究价值,而半结构化场景为边线检测带来新的挑战.基于手工提取特征的检测方法在面对非城市环境或路面视觉信息不明显的复杂场景时并不能表现出鲁棒性,利用深度学习方法进行边线检测已成为一种主流趋势.鉴于此,针对半结构化场景下的移动机器人视觉边线检测研究进行综述,考察部分边线检测算法在半结构化场景下的应用前景与应用效果.首先,对常用的边线检测数据集进行整理,从采集场景、标注类型等角度分析当前数据集及研究的侧重点;其次,对不同的方法进行分类与总结,比较检测与数据处理过程;接着,对深度学习常用的评价指标进行整理,并对不同方法在面对不同场景时的检测效果进行比较和分析;最后,针对半结构化场景下边线检测所存在的问题,对基于深度学习的视觉边线检测方法的研究方向进行展望.

    Abstract:

    Visual perception for autonomous robots is one of the key technologies to realize robot-environment interaction. Lane, as a kind of geometry information to ensure the safety of robot motion , has a wide research value, and lane detection in semi-structured scenarios brings new challenges to this area. The conventional method based on classic feature extraction process does not show robustness for non-urban environments or complex scenarios that have only degenerate geometric features. The use of deep learning methods for lane detection has become a mainstream trend. In this paper, we review the research on visual edge detection for mobile robots in semi-structured scenarios, and the application prospect and effect of the lane detection algorithm in semi-structured scenarios are investigated. First, the common edge line detection datasets are organized, and the current datasets and the focus of the research are analysed from the perspective of acquisition scenarios and annotation types. Second, different methods are classified and summarized, and the detection and data processing processes of different methods are compared. Then, the commonly used evaluation metrics of deep learning are sorted out, and the detection results of different methods in the face of different scenarios are compared and analyzed. Finally, the research direction of the edge detection method based on deep learning is prospected for the problems of visual lane detection in semi-structured scenes.

    参考文献
    相似文献
    引证文献
引用本文

苏晓杰,刘星雨,李睿,等.半结构化场景下移动机器人视觉边线检测综述[J].控制与决策,2023,38(6):1491-1509

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-13
  • 出版日期: 2023-06-20
文章二维码