基于准最大最小模型预测控制的AUV视觉对接
CSTR:
作者:
作者单位:

1. 大连海事大学 船舶电气工程学院,辽宁 大连 116000;2. 大连民族大学 机电工程学院,辽宁 大连 116600;3. 辽宁警察学院 治安管理系,辽宁 大连 116036

作者简介:

通讯作者:

E-mail: weiy@dlmu.edu.cn.

中图分类号:

TP29

基金项目:

大连市科技创新基金项目(2019J12GX040);中央高校基本科研业务费专项资金项目(3132019355);大连高层次人才创新支撑计划项目(2020RQ060);辽宁省教育厅基本科研重点项目(LJKZ1078).


Quasi-min-max MPC algorithm for visual docking of an autonomous underwater vehicle
Author:
Affiliation:

1. College of Marine Electrical Engineering,Daliann Maritime University,Dalian 116000,China;2. College of Mechanical and Electronic Engineering,Dalian Minzu University,Dalian 116600,China;3. Department of Public Security Management,Liaoning Police College,Dalian 116036,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对六自由度自主式水下机器人(autonomous underwater vehicle,AUV)视觉对接这一重要课题,提出一种基于融合深度信息的改进准最大最小模型预测控制(quasi-min-max model predictive control,QMM-MPC)方法,有效提高复杂水下视觉伺服对接系统性能.首先,针对水下AUV视觉由于能见度低导致深度信息存在不确定性的影响,建立新的六自由度AUV视觉伺服模型;然后,结合AUV运动和图像特征运动的测量数据,设计在线深度估计器,同时提出结合多李雅普诺夫函数的QMM-MPC算法,通过求取凸多面体中各顶点不同上界值,降低传统QMM-MPC算法中单李雅普诺夫函数上界所带来的强保守性;最后,通过仿真验证所提出方法的有效性和优越性.

    Abstract:

    In this paper, a quasi-max-min predictive control(QMM-MPC) algorithm based on depth information is proposed for visual docking of the 6-DOF autonomous underwater vehicle(AUV), which can effectively improve the performance of the complex underwater visual servo docking system. Firstly, a new 6-DOF visual servo model for the underwater AUV is established to solve the problem of the uncertainty of depth information caused by the low visual visibility of the underwater AUV. Then, an online depth estimator is designed by combining the measurement data of AUV motion and image feature motion. Meanwhile, a QMM-MPC algorithm combining multi-Lyapunov functions is proposed, which can reduce the strong conservatism caused by one upper bound of the Lyapunov function in the traditional QMM-MPC algorithm by solving the different upper bound of each vertex in the convex polyhedron. Finally, the simulation results show the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

岳伟,季嘉诚,刘中常,等.基于准最大最小模型预测控制的AUV视觉对接[J].控制与决策,2023,38(7):1887-1894

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-27
  • 出版日期: 2023-07-20
文章二维码