基于相对输出信息的多智能体系统分布式故障检测
CSTR:
作者:
作者单位:

同济大学 电子与信息工程学院,上海 201804

作者简介:

通讯作者:

E-mail: yang_chen@tongji.edu.cn.

中图分类号:

TP277

基金项目:

科技创新2030-----“新一代人工智能”重大项目(2020AAA0108100);国家自然科学基金青年基金项目(62103304);上海市青年科技英才扬帆计划项目(21YF1450500);上海市市级科技重大专项(2021SHZDZX0100);上海市科研计划项目(19511132101).


Distributed fault detection of multi-agent system based on relative output information
Author:
Affiliation:

College of Electronic and Information Engineering,Tongji University,Shanghai 201804,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对一类邻居控制信息未知,且节点只能获得相对输出信息的多智能体系统,研究基于未知输入观测器的分布式故障检测问题,以实现节点对自身及邻居故障的实时检测.首先,通过对节点动力学模型进行分解与变换,构造出基于相对输出信息的故障检测参考模型,并给出未知输入观测器的存在性证明;接着,设计不依赖邻居节点控制信息的未知输入观测器,突破控制信息缺失导致观测器失效的理论难题;最后,借助未知输入观测器设计故障检测算法,并完成算法的分布式实现.仿真结果验证了所提方法的有效性与先进性.

    Abstract:

    For a class of multi-agent systems where the control information of neighbor nodes is unknown and only local relative output information is available for each agent, the distributed fault detection problem based on the unknown input observers is investigated in this paper, and the real-time fault detection of agent itself and its neighbors is realized. Firstly, by decomposing and transforming the node dynamics, a reference model for fault detection based on the relative output information is constructed, and the existence of the unknown input observer is proved. Then, the unknown input observer that decoupled from the control information of neighbor nodes is designed, which breaks the limitation that the lack of control information may lead to the failure of the observer. Finally, the fault detection algorithm based on the unknown input observer is designed, and the distributed implementation of the algorithm is achieved. The simulation results validate the effectiveness and improvements of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

李俨,杨晨.基于相对输出信息的多智能体系统分布式故障检测[J].控制与决策,2023,38(7):1901-1908

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-27
  • 出版日期: 2023-07-20
文章二维码