基于围攻机制的改进鲸鱼优化算法
CSTR:
作者:
作者单位:

郑州轻工业大学 电气信息工程学院,郑州 450002

作者简介:

通讯作者:

E-mail: junweisun@yeah.net.

中图分类号:

TP18

基金项目:

国家自然科学基金河南联合基金重点项目(U1804262);中原科技创新领军人才项目(204200510003).


Improved whale optimization algorithm based on siege mechanism
Author:
Affiliation:

School of Electrical and Information Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统鲸鱼优化算法全局探索能力不足、收敛精度低、速度慢等问题,提出一种基于围攻机制的改进鲸鱼优化算法.首先,使用Tent混沌映射和非线性参数,使种群的分布更均匀,并且协调了鲸鱼优化算法的探索与开发能力;其次,考虑算法适应度在寻优中的重要作用,提出限制适应度控制和高斯检测机制;最后,结合哈里斯鹰优化算法的围攻机制,提升鲸鱼优化算法的全局探索和局部寻优的能力.将改进的算法与多种算法在13个可变维基准函数上进行仿真测试,结果表明,基于围攻机制的改进鲸鱼优化算法,在拥有较好鲁棒性和稳定性的同时,能够保证收敛精度与速度.

    Abstract:

    An improved whale optimization algorithm based on siege mechanism is proposed to solve the problems of the traditional whale optimization algorithm, such as its insufficient global exploration ability, low convergence accuracy and slow speed. Firstly, the algorithm uses Tent chaos mapping and nonlinear parameters to make the population distribution more uniform and coordinate the exploration and development ability of whale optimization algorithm. Then, considering the important role of algorithm fitness in optimization, the limited fitness control and Gaussian detection mechanism are proposed. Finally, combined with the siege mechanism of the Harris hawks optimization algorithm, the global exploration and local optimization capabilities of the whale optimization algorithm are improved. The results show that the improved whale optimization algorithm based on the siege mechanism has good robustness and stability, while ensuring the convergence accuracy and speed.

    参考文献
    相似文献
    引证文献
引用本文

王延峰,廖荣航,梁恩豪,等.基于围攻机制的改进鲸鱼优化算法[J].控制与决策,2023,38(10):2773-2782

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-19
  • 出版日期: 2023-10-20
文章二维码