一种具有情感和记忆机制的迷宫机器人认知模型
CSTR:
作者:
作者单位:

北方工业大学 电气与控制工程学院,北京 100144

作者简介:

通讯作者:

E-mail: zhangxiaoping369@163.com.

中图分类号:

TP242

基金项目:

国家自然科学基金项目(61903006);北京市自然科学基金项目(4202022,4204096,4212035);北京市长城学者项目(CIT&TCD 20190304);北京市教委科研项目(KM202010009006,201910009008).


A cognitive model of maze robot with emotion and memory mechanism
Author:
Affiliation:

School of Electrical and Control Engineering,North China University of Technology,Beijing 100144,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    情感作为人类的高级认知,在环境学习和环境理解方面具有重要意义.将情感引入机器人搜索任务,同时结合记忆机理,提出一种具有情感和记忆机制的认知模型,由内部状态、感受器、环境状态系统、情感系统、动态知识库、行为决策系统以及执行器7部分组成.情感系统包含情感生成、情感状态以及情感记忆3个模块,其中,情感记忆用于提供内部奖励.记忆功能在动态知识库中实现.基于强化学习理论框架,将情感内部奖励与记忆进行融合,形成新的奖励机制,并设计相关认知学习算法.以需要“能量补给”的迷宫机器人搜索任务对所提出认知模型进行验证,结果发现,当面对不同情境时,机器人会产生不同的情感.结合前期记忆,机器人所作决策更“拟人”,表明情感和记忆机制设计的有效性.将所提出认知模型、无情感决策认知模型、基于$\varepsilon$-greedy策略的Q学习算法进行对比,结果表明,情感和记忆的引入,能够提高机器人的学习效率,同时学习过程更稳定.

    Abstract:

    As a higher level of human cognition, emotion plays an important role in environment learning and understanding. In this paper, emotion is introduced into the robot search task. By combined with memory mechanism, a cognitive model is proposed, which is composed of seven parts: internal state, receptor, environmental state system, emotion system, dynamic knowledge base, behavior decision system and actuator. In further, the emotion system consists of three modules: Emotion generation, emotion state and emotion memory, where the emotion memory is used to provide internal rewards. The memory function is implemented in the dynamic knowledge base. Based on the theoretical framework of reinforcement learning, the learning algorithm of the cognitive model is designed by integrating emotional internal reward and memory as a new reward mechanism. The maze robot search task requiring “energy replenishment” is tested, and results show that when faced with different situations, the robot can generate different emotions. Combined with the previous memory, the robot's decision-making seems more “anthropomorphic”, which firstly proves the effectiveness of the design of the emotion and memory mechanism. The cognitive model, the cognitive model without emotion and the Q-learning algorithm based on the $\varepsilon$-greedy strategy are compared, and results show that with the mechanism of emotion and memory, the robot can learn faster, and at the same time, its learning process is more stable.

    参考文献
    相似文献
    引证文献
引用本文

张晓平,李凯,王力,等.一种具有情感和记忆机制的迷宫机器人认知模型[J].控制与决策,2023,38(10):2850-2858

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-19
  • 出版日期: 2023-10-20
文章二维码