基于点云采样权重估计的未知物体抓取位姿生成方法
CSTR:
作者:
作者单位:

1. 电子科技大学中山学院 计算机学院,广东 中山 528402;2. 广东工业大学 自动化学院,广州 510006

作者简介:

通讯作者:

E-mail: alex_yangliang@foxmail.com.

中图分类号:

TP242

基金项目:

国家自然科学基金项目(61941301,61803090,11771102);国家博士后科学基金面上项目(2018M633353);广东省自然科学基金项目(2019A1515012109,2021A030310668,2022A1515010178);广东省重点领域研发计划项目(2019B090910001,2021A0101180005);广东省普通高校科研项目重点领域专项(2019KZDZX 1037);四川省科技支撑计划项目(2019YFG0352).


Grasping pose generation method for unknown objects based on point cloud sampling weight estimation
Author:
Affiliation:

1. School of Computer Engineering,University of Electronic Science and Technology of China,Zhongshan Institute,Zhongshan 528402,China;2. School of Automation,Guangdong University of Technology,Guangzhou 510006,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机械臂在非结构环境中对未知物体抓取位姿生成困难及抓取稳定性差的问题,提出一种基于点云采样权重估计的抓取位姿生成方法.首先通过移动深度相机的方式拼接得到较完整的物体点云信息,并对物体的几何特性进行分析,有效避开物体不宜抓取的位置进行抓取位姿样本生成;然后结合几何约束条件实现抓取位姿搜索,并利用力封闭条件对样本稳定性进行评估;最后为了对实际的抓取位姿进行评价,根据其稳定性、夹取深度、夹取角度等设定抓取可行性指标,据此在工作空间输出最佳抓取位姿并完成指定的抓取任务.实验结果表明,采用所提方法能够高效生成大量且稳定的抓取位姿,并在仿真环境中有效实现机械臂对单个或多个随机摆放的未知物体的抓取任务.

    Abstract:

    To resolve the problem of generating grasping poses for unknown objects in an unstructured environment, a method based on point cloud sampling weight estimation is proposed to generate grasping pose. Firstly, the object point cloud information is spliced by moving camera, then the geometric characteristics of the object are utilized to improve grasp quality. In addition, the candidates pose can be evaluated by geometric constraints, while the force closure condition is used to quantify pose stability. Finally, in order to select the optimal pose to perform the grasping task, set reliability indicators based on pose stability, depth and angle. Experimental results show that the proposed method can efficiently generate a large number of stable grasping poses, and complete the grasping tasks of different unknown objects by the manipulator in the simulation environment effectively.

    参考文献
    相似文献
    引证文献
引用本文

蔡子豪,杨亮,黄之峰.基于点云采样权重估计的未知物体抓取位姿生成方法[J].控制与决策,2023,38(10):2859-2866

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-19
  • 出版日期: 2023-10-20
文章二维码