社交网络中基于代言人价值排序算法的移动优惠券投放决策
CSTR:
作者:
作者单位:

南京理工大学 经济管理学院,南京 210094

作者简介:

通讯作者:

E-mail: wensheng_yang@163.com.

中图分类号:

C93;F272.3

基金项目:

国家自然科学基金项目(71771122);江苏省哲学社会科学基金项目(19GLB009);江苏省研究生科研与实践创新计划项目(KYCX20_0334).


Mobile coupon distribution decision based on the endorser value rank algorithm in social networks
Author:
Affiliation:

School of Economics and Management,Nanjing University of Science and Technology,Nanjing 210094,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了在社交网络中选择高价值代言人以达到尽可能好的移动优惠券投放效果,首先,根据粉丝数量和活跃状态对代言人社会传播能力进行建模,并利用移动优惠券类型的偏好程度和移动优惠券转发率对代言人个体分享意愿进行建模;然后,基于社会传播能力和个体分享意愿提出代言人价值的概念,设计代言人价值排序算法(endorser value rank algorithm);接着,在考虑代言人价值的基础上,针对企业利润和代言人收益最大化的多目标优化问题,建立移动优惠券投放模型,并设计基于遗传算法的HFNSGA算法,据此实现社交网络中基于代言人价值的移动优惠券投放;最后,通过在GitHub上的真实用户数据集对EVRank算法进行实验.实验结果表明,EVRank算法在准确率和匹配率上均优于其他相关算法,同时,算例分析表明,HFNSGA算法不仅可有效地求解高维多目标优化问题,且其解集有较好的分布性和均匀性,能够有效指导企业进行移动优惠券投放决策.

    Abstract:

    In order to select high-value endorsers in social networks to achieve the best possible mobile coupon distribution effect. Firstly, the endorser's social communication ability is modeled according to the number of fans and active status. At the same time, the perference degree of mobile coupon types and the forwarding rate of mobile coupons are used to model the individual's sharing willingness of the endorser. Secondly, the concept of endorser value is proposed from the social communication ability and the individual sharing willingness, and the endorser value ranking algorithm is designed. Then, on the basis of considering the value of the endorser, aiming at the multi-objective optimization problem of maximizing the profit of the firm and the profit of the endorsers, a mobile coupon distribution model is established, and the high face-value non-dominated sorting genetic algorithm (HFNSGA) based on the genetic algorithm is designed, which can realize the distribution of mobile coupons based on the endorser value in social networks. Finally, experiments are conducted on the real user data set on the GitHub, the results show that the EVRank algorithm is superior to other related algorithms in accuracy and matching rate. At the same time, the example analysis shows that the HFNSGA algorithm can not only effectively solve the high-dimensional multi-objective optimization problem, but also its solution set has good distribution and uniformity, which can effectively guide enterprise to make mobile coupon distribution decision.

    参考文献
    相似文献
    引证文献
引用本文

田应东,杨文胜,戴静怡.社交网络中基于代言人价值排序算法的移动优惠券投放决策[J].控制与决策,2023,38(10):2987-2995

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-19
  • 出版日期: 2023-10-20
文章二维码