基于隐式积分的广义离散趋近律
CSTR:
作者:
作者单位:

哈尔滨工业大学 航天学院,哈尔滨 150001

作者简介:

通讯作者:

E-mail: hxia@hit.edu.cn.

中图分类号:

TP273

基金项目:

国家重点研发计划项目(2020YFC2200600);天津市自然科学基金重点项目(19JCZDJC32300).


Generalized discrete reaching law based on implicit integration
Author:
Affiliation:

School of Astronautics,Harbin Institute of Technology,Harbin 150001,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统基于前向欧拉近似的离散趋近律存在数值抖振的问题,首先,提出一种衍生于后向欧拉积分的广义离散趋近律,该广义离散趋近律具有全局无抖振收敛特性,并释放更多的参数设计自由度;然后,揭示趋近律参数对滑模变量收敛速率的影响关系,为参数整定提供理论依据;最后,在考虑系统不确定性时,给出滑模面最终的边界层,验证所设计的趋近律可同时确保系统的快速瞬态响应和高精度控制.数值仿真验证了所提出算法的有效性.

    Abstract:

    A novel backward Euler integration-based generalized discrete reaching law is proposed for the numerical chattering in the traditional forward Euler approximation of reaching law. Firstly, the proposed reaching law exhibits globally chattering-free convergence, and releases more freedom degrees for parameter design. Moreover, the influence relationship of parameters on the convergence rate of sliding variables is established, which provides a theoretical foundation for parameter tuning. Finally, when taking into account the uncertainty of systems, the final boundary layer of sliding surface is deduced, and it is proved that the designed reaching law can guarantee the fast transient response and high-precision control of the closed-loop system at the same time. Numerical simulations validate the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

王聪,夏红伟,任顺清.基于隐式积分的广义离散趋近律[J].控制与决策,2023,38(10):3003-3008

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-19
  • 出版日期: 2023-10-20
文章二维码