基于单网络评判学习的非线性系统鲁棒跟踪控制
CSTR:
作者:
作者单位:

1. 北京工业大学 信息学部, 北京 100124; \hspace{3pt};2. 北京工业大学 计算智能与智能系统北京市重点实验室,北京 100124; \hspace{3pt};3. 北京工业大学 北京人工智能研究院,北京 100124;4. 北京工业大学 智慧环保北京实验室,北京 100124

作者简介:

通讯作者:

E-mail: adqiao@bjut.edu.cn.

中图分类号:

TP273

基金项目:

北京市自然科学基金项目(JQ19013);国家自然科学基金项目(61773373,61890930-5,62021003);科技创新2030-“新一代人工智能”重大项目(2021ZD0112302);国家重点研发计划项目(2018YFC1900800-5).


Robust tracking control for nonlinear systems based on critic learning formulation with single network
Author:
Affiliation:

1. Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;2. Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing University of Technology,Beijing 100124,China;3. Beijing Institute of Artificial Intelligence,Beijing University of Technology,Beijing 100124,China;4. Beijing Laboratory of Smart Environmental Protection,Beijing University of Technology,Beijing 100124,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对一类具有不确定性的连续时间非线性系统,提出一种基于单网络评判学习的鲁棒跟踪控制方法.首先建立由跟踪误差与参考轨迹构成的增广系统,将鲁棒跟踪控制问题转换为镇定设计问题.通过采用带有折扣因子和特殊效用项的代价函数,将鲁棒镇定问题转换为最优控制问题.然后,通过构建评判神经网络对最优代价函数进行估计,进而得到最优跟踪控制算法.为了放松该算法的初始容许控制条件,在评判神经网络权值更新律中增加一个额外项.利用Lyapunov方法证明闭环系统的稳定性及鲁棒跟踪性能.最后,通过仿真结果验证该方法的有效性和适用性.

    Abstract:

    For a kind of continuous-time nonlinear systems with uncertainties, a robust tracking control method is established based on critic learning formulation with single network. Firstly, an augmented system consisting of the tracking error and the reference trajectory is established, and the robust tracking control problem is transformed into a stabilization design problem. By adopting a cost function with a discount factor and a special utility term, the robust stabilization problem is transformed into an optimal control problem. %modified Then, the optimal cost function is estimated by building a critic neural network, and consequently the optimal tracking control algorithm can be derived. In order to relax the initial admissible control conditions in the proposed algorithm, an extra term is added to the weight updating law of the critic neural network. Furthermore, the stability of the closed-loop system and the robust tracking performance are proved using the Lyapunov approach. Finally, the effectiveness and applicability of the developed approach are demonstrated via simulation results.

    参考文献
    相似文献
    引证文献
引用本文

霍煜,王鼎,乔俊飞.基于单网络评判学习的非线性系统鲁棒跟踪控制[J].控制与决策,2023,38(11):3066-3074

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-10-08
  • 出版日期: 2023-11-20
文章二维码