基于非线性云化的自适应帝王蝶优化算法
CSTR:
作者:
作者单位:

1. 长安大学 人文学院,西安 710054;2. 大连理工大学 人文与社会科学学部,辽宁 大连 116024

作者简介:

通讯作者:

E-mail: tbca_0929@126.com.

中图分类号:

TP301.6

基金项目:

国家自然科学基金项目(71974029);中央高校基本科研业务费专项资金项目(300102112608);陕西省社会科学基金项目(2021R013).


Self-adaptive monarch butterfly optimization based on nonlinear cloud-transfer
Author:
Affiliation:

1. School of Humanities and Social Science,Changán University,Xián 710054,China;2. Faculty of Humanities and Social Science,Dalian University of Technology,Dalian 116024,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对帝王蝶算法多样性退化、易陷入局部最优导致寻优精度不高的问题,提出一种基于非线性云化的自适应帝王蝶算法(NCSMBO).深入探究帝王蝶算法的进化机制,指出其本质为网格式搜索算法;在迁移和调整算子中,采用正向正态云发生器对父代帝王蝶个体执行非线性云化操作,增加候选解的数量,提高局部开发能力;对云化后的后代个体引入贪婪策略,增强算法的可行性;为从发生概率上对突变进行控制,进一步给出双圆正切形式的自适应调整率.在12个不同特征基准测试函数上对包含NCSMBO在内的7种优化算法进行综合评估,以及对两类数学规划问题求解验证,实验验证结果均表明所提算法具有更高的收敛精度和稳定性.

    Abstract:

    In order to solve the problem of low precision of monarch butterfly optimization(MBO)causing by diversity degradation and being easy to fall into local optimum, a self-adaptive monarch butterfly optimization based on nonlinear cloud-transfer(NCSMBO) is proposed. The evolution mechanism of the MBO is deeply explored which indicates the nature of the MBO is grid search. Nonlinear cloud-transfer operation to parent monarchs is executed utilizing a forward normal-cloud generator in both migration operators and adjusting operators, which can increase candidate solutions and improve the ability of local exploitation. Meanwhile, a greedy strategy is introduced in offspring from a cloud-transfer to enhance the feasibility. A self-adaptive adjustment rate in the form of double-circle-tangent is given to control mutation based on occurrence probability. Seven optimization algorithms including the NCSMBO are overall evaluated on the 12 benchmark functions with different features, and two types of mathematical planning problems are solved and verified. All of the simulation results show that the proposed algorithm has better convergence accuracy and stability.

    参考文献
    相似文献
    引证文献
引用本文

李晓平,杜波,王贤文.基于非线性云化的自适应帝王蝶优化算法[J].控制与决策,2023,38(12):3327-3335

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-13
  • 出版日期: 2023-12-20
文章二维码