基于倍频卷积和注意力机制的图像去雨
CSTR:
作者:
作者单位:

1. 河北工业大学 电子信息工程学院,天津 300401;2. 陆军工程大学石家庄校区 电子与光学工程系,石家庄 050003;3. 河北工业大学 人工智能与数据科学学院,天津 300401

作者简介:

通讯作者:

E-mail: yuming@hebut.edu.cn.

中图分类号:

TP183;TP391.41

基金项目:

国家自然科学基金项目(61806071,62102129).


Image de-raining based on octave convolution and attention mechanism
Author:
Affiliation:

1. College of Electronic Information Engineering,Hebei University of Technology,Tianjin 300401,China;2. Department of Electronic and Optical Engineering,Shijiazhuang Campus of Army Engineering University,Shijiazhuang 050003,China;3. School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机器视觉场景图像中由于雨线影响导致背景信息模糊、损失的问题,提出一种基于倍频卷积和注意力机制的图像去雨方法.首先,建立基于空-频域去雨模型,设计基于空间尺度变换和倍频卷积的频率特征分解模块,通过学习得到频率特征和雨线特征的映射关系,降低低频特征空间冗余,提高网络运行效率;其次,设计多层通道注意力模块映射雨线层权重信息,增强重要特征,挖掘雨线层之间的亮度差异,提高雨线检测性能;最后,通过序列操作迭代分解出不同成分的雨线信息,进而完成场景图像去雨.实验结果表明,所提方法对不同方向、形状的雨线和雨滴具有良好的去除性能,同时对于背景图像的细节与边缘信息也具有较好的保护作用.

    Abstract:

    Aiming at the problem of background information blur and loss caused by rain streaks in machine vision scene images, a method of image de-raining based on octave convolution and attention mechanism is proposed. Firstly, a de-raining model based on spatial-frequency domain is established, and a frequency feature decomposition module is designed based on spatial scale transformation and octave convolution. The mapping relationship between frequency features and rain streaks features is obtained through learning, so as to reduce spatial redundancy of low-frequency features and improve network operation efficiency. Secondly, the multi-layer channel attention module is designed to map the weight information of rain streaks, enhance important features, mine the brightness difference between rain streaks layers, and improve the performance of rain streaks detection. Finally, the rain streaks information of different components is decomposed iteratively through sequence operation, and then the de-raining of scene image is completed. Experimental results show that the proposed method has good removal performance for rain streaks and raindrops with different directions and shapes, and also has good protection for details and edge information of background image.

    参考文献
    相似文献
    引证文献
引用本文

杨青,于明,付强,等.基于倍频卷积和注意力机制的图像去雨[J].控制与决策,2023,38(12):3372-3380

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-13
  • 出版日期: 2023-12-20
文章二维码