基于自适应调节的灰色滚动预测模型及对碳排放趋势预测
CSTR:
作者:
作者单位:

1. 南京审计大学 商学院,南京 211815;2. 浙江财经大学 经济学院,杭州 310018

作者简介:

通讯作者:

E-mail: dingsong1129@163.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(71701101,71901191);江苏省研究生科研与实践创新计划项目(SJCX22_0988, KYCX22_2193);浙江省软科学项目(2021C35068);江苏高校“青蓝工程”项目.


Grey rolling model based on self-adaptive adjustment and forecasting tendency of carbon emission
Author:
Affiliation:

1. Business School,Nanjing Audit University,Nanjing 211815,China;2. College of Economics,Zhejiang University of Finance and Economics,Hangzhou 310018,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用有限数据预测发展趋势是数据建模领域广泛存在的问题,采用灰预测模型处理此类问题时会面临适应数据不规则波动特征的挑战性.在灰预测模型基础上提出适应数据特征的滚动建模方法,结合双参数的变权缓冲算子建立一种{AGRM(1,1)

    Abstract:

    Using limited data to predict the development trend is a widespread problem in the field of data modeling. When dealing with such problems, a grey prediction model faces the challenge of adapting to the irregular fluctuation characteristics of data. Based on the grey prediction model, this paper proposes a rolling modeling method that dynamically adapts to the data characteristics, and establishes the AGRM(1,1) model combined with the full information variable weight buffer operator that contains two parameters. The model uses the unbiased optimized grey prediction model to accurately simulate different growth coefficients on the basis of data slicing, and uses the buffer operator chain to adjust the data. Finally, an operator parameter optimization method based on the differential evolution algorithm is designed. The model changes the monotonous structure of the form of the traditional grey prediction model's time response function, and realizes the accurate prediction of the sequence with fluctuation and oscillation. In the case study, the test data of different growth coefficients are used to verify that the {AGRM(1,1)

    参考文献
    相似文献
    引证文献
引用本文

徐宁,秦邱皓,王天宇,等.基于自适应调节的灰色滚动预测模型及对碳排放趋势预测[J].控制与决策,2023,38(12):3409-3417

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-13
  • 出版日期: 2023-12-20
文章二维码