基于长短期超图神经网络匹配的多目标跟踪
CSTR:
作者:
作者单位:

山东工商学院

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


A multi-object tracking method based on long-term and short-term hypergraph neural network matching
Author:
Affiliation:

Shandong Technology and Business University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对联合检测与跟踪范式中存在的检测特征和Re-ID 特征相互竞争的问题和在复杂场景下难以保持被遮挡目标视觉一致性关系的问题,本文提出了一个端到端的超图神经网络关联的多目标跟踪方法(Hypergraph neural network matching tracking, HGTracker) 。首先,HGTracker 设计了一个增强的空间金字塔池化网络(Enhanced Spatial Pyramid Pooling Networks, ESPPNet) 模块用来提高目标检测骨干网络的检测能力,该模块通过聚合不同维度的特征,来适应跟踪过程的不同任务,有效地缓解了一阶段跟踪方法中检测任务和Re-ID任务相互竞争的问题。其次,提出一个基于长短期超图神经网络(Short-term and Long-term Hypergraph neural network matching)的数据关联模块,通过设计长期超图神经网络和短期超图神经网络来分别关联未被遮挡和被遮挡的检测视觉特征,将数据关联问题转化为轨迹超图和检测超图之间的超图匹配问题,跟踪器将轨迹片段信息和当前检测帧信息之间的关系建模为超图神经网络,在严重遮挡的情况下保持了视觉轨迹的一致性。通过在MOT17 和MOT20 数据集上实验对比,验证了HGTracker 跟踪方法的有效性。

    Abstract:

    Addressing the issues of competition between detection features and Re-ID features in joint detection and embedding multi-object tracking methods, as well as difficulties in maintaining visual consistency for occluded targets in complex scenes, we propose an end-to-end hypergraph neural network matching tracking method, named HGTracker. Firstly, HGTracker introduces an enhanced Spatial Pyramid Pooling Networks (ESPPNet) module to enhance the detection capability of the target detection backbone network.This module aggregates features from different dimensions to adapt to different tasks in the tracking process, effectively alleviating the issue of competition between detection and Re-ID tasks in one-stage multi-object tracking methods. Secondly, it introduces a Short-term and Long-term Hypergraph Neural Network Matching module, which designs long-term and short-term hypergraph neural networks to associate unoccluded and occluded detection visual features. It transforms the data association problem into a hypergraph matching problem between trajectory hypergraphs and detection hypergraphs. The tracker models the relationship between trajectory segment information and the current detection frame information as a hypergraph neural network, maintaining visual trajectory consistency under severe occlusion. Experimental comparisons on the MOT17 and MOT20 datasets validate the effectiveness of the HGTracker tracking method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-03
  • 最后修改日期:2024-07-12
  • 录用日期:2024-07-15
  • 在线发布日期: 2024-07-28
  • 出版日期:
文章二维码