基于自适应特征模式分解与联合卷积的UUV辐射噪声识别方法
CSTR:
作者:
作者单位:

河南大学人工智能学院

作者简介:

通讯作者:

中图分类号:

TN911.6,TB566,TP181

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


UUV Radiated Noise Identification Method Based on Adaptive Feature Modal Decomposition and Joint Convolutional Network
Author:
Affiliation:

School of Artificial Intelligence,Henan University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水下小型UUV难以检测识别问题,提出了基于自适应特征模式分解与联合卷积网络的UUV辐射噪声识别方法.首先,采用自适应特征模式分解(AFMD) 对信号进行处理,获取一系列分解分量,根据GINI指标选取最优分量进行重构;其次,对重构后的信号进行连续小波变换,获取不同类型辐射噪声的二维时频图,最后,在频率动态卷积模块与SGE模块基础上,引入特征融合模块构建联合卷积神经网络(JCNN),利用所设计的网络提取二维时频图特征,实现水下无人潜水器辐射噪声分类.实验结果表明,本文提出的方法能够对水下UUV辐射噪声进行识别,且识别率较高.

    Abstract:

    This study presents a novel approach aimed at addressing the detection and recognition challenges of underwater Unmanned Underwater Vehicle(UUV) radiation noise. The proposed method combines Adaptive Feature Modal Decomposition (AFMD) with a Joint Convolutional Neural Network (JCNN). Initially, the AFMD is applied to the signal to obtain a set of decomposition components, followed by reconstruction based on the GINI index to select the most optimal component. Subsequently, the reconstructed signal undergoes continuous wavelet transformation, producing 2D time-frequency maps representative of distinct radiation noise categories. The methodology incorporates a feature fusion module within the Frequency Dynamic Convolution Module and SGE Module to establish the JCNN. This network adeptly extracts features from the 2D time-frequency maps, facilitating the classification of UUV radiation noise. Experimental findings demonstrate the method"s effectiveness in accurately identifying underwater UUV radiation noise, achieving a notably high recognition rate.

    参考文献
    相似文献
    引证文献
引用本文

肖启阳,黄澳飞,金勇,等.基于自适应特征模式分解与联合卷积的UUV辐射噪声识别方法[J].控制与决策,2025,40(1):155-161

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-03
  • 最后修改日期:2024-06-17
  • 录用日期:2024-04-24
  • 在线发布日期: 2024-05-06
  • 出版日期:
文章二维码