高维性能因子系统结构可靠性的主动学习分析方法
CSTR:
作者:
作者单位:

1.国防科技大学;2.西安卫星测控中心

作者简介:

通讯作者:

中图分类号:

TB114.3

基金项目:

国家自然科学基金项目(72271238, 71801219); 湖南省自然科学基金项目(2021JJ20050); 国防科技大学研究生科研创新项目(XJCX2023055)


Active Learning Analysis Method for Structural Reliability of Systems with High Dimensional Performance Factors
Author:
Affiliation:

1.National University of Defense Technology;2.Xian Satellite Measurement and Control Center

Fund Project:

National Natural Science Foundation of China (72271238, 71801219); Natural Science Foundation of Hunan Province(2021JJ20050); The Program of Postgraduate Research Innovation of National University of Defense Technology(XJCX2023055)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在系统的结构可靠性分析中, 针对主动学习克里金(active learning Kriging, AK) 方法里学习函数涵盖信息不全面、终止准则过于保守, 导致在高维因子系统的求解中加点过多带来高昂成本、效率较低的问题, 提出一种高维性能因子系统结构可靠性的主动学习分析方法. 首先基于初始样本构建Kriging 模型, 基于一种新的学习函数寻点并更新模型, 该函数能够同时考虑极限状态面附近、方差所度量的不确定性大小, 以及候选点本身的概率密度情况, 使得增加的学习点更具代表性? 而后, 用预测值的最大相对误差作为加点终止准则, 最后估计系统的失效概率. 在3 个数值函数算例验证的基础上, 针对一个8 维曲柄滑块机械结构中连杆的失稳问题进行了研究. 结果表明, 与已有常见的学习函数相比, 所提方法在保证预测精度条件下, 减少了加点数量, 能够实现准确、高效的可靠性分析.

    Abstract:

    In the structural reliability analysis of the system, the learning function in the active learning Kriging (AK) method does not cover comprehensive information and the termination criterion is too conservative, resulting in too many points added in the solution process of the high-dimensional factor system. To solve the problems of high cost and low efficiency, an active learning analysis method for the structural reliability of system with high-dimensional performance factors is proposed. First, the Kriging model is constructed based on the initial samples, and a proposed new learning function, which considers the uncertainty measured near the limit state surface, the variance, and the probability density of the candidate points themselves, making the added learning points more representative and updating the model. Then, the maximum relative error of the predicted value is used as the termination criterion. Finally the failure probability of the system is estimated. Based on the verification of three numerical function examples, the proposed method is applied in an instability problem of the connecting rod in an 8-dimensional crank slider mechanical structure. The results show the proposed method reduces the number of addition points while ensuring the prediction accuracy, and can achieve accurate and efficient reliability analysis compared with the typical learning functions.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-09
  • 最后修改日期:2024-06-19
  • 录用日期:2024-04-07
  • 在线发布日期: 2024-05-03
  • 出版日期:
文章二维码