基于模糊分类预选的代理辅助多目标进化算法
CSTR:
作者:
作者单位:

兰州理工大学

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

时间关联特征问题的动态多目标进化算法设计与应用


Fuzzy classification pre-selection based surrogate-assisted multi-objective evolutionary algorithm
Author:
Affiliation:

Lanzhou University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深入探究实际工程问题后, 发现求解昂贵高维多目标优化问题的需求正在逐渐增多. 一般回归模型求解这类问题时, 模型累积误差和运算量会急剧增加. 为更好地提高代理辅助进化算法的搜索效率, 并平衡高维多目标问题中种群的收敛性与多样性, 本文提出一种基于模糊分类预选策略的代理辅助进化算法 (FCPSEA). 首先, 初始化种群并进行昂贵评估, 凭借非支配关系与拥挤度构造两档训练样本集. 然后, 利用训练样本和双档案算子来较为准确的引导分类器分类. 最后, 提出一种基于模糊分类预选的模型管理策略, 根据预测的双档案类标签与隶属度来设置模型管理策略. 为验证本文算法的性能, 在包含各种特征的两组测试问题上与近几年的经典算法进行了对比实验. 实验结果表明, 该算法在求解昂贵高维多目标优化问题上具有较强的竞争力.

    Abstract:

    After an in-depth exploration of practical engineering problems, it has been discovered that the demand for solving expensive high-dimensional multi-objective optimization problems is gradually increasing. When traditional regression models are used to tackle such issues, cumulative error and computational complexity tend to surge significantly. To enhance the search efficiency of agent-assisted evolutionary algorithms and strike a balance between convergence and diversity in high-dimensional multi-objective problems, this paper introduces a Fuzzy Classification Preselection Strategy-based Agent-assisted Evolutionary Algorithm (FCPSEA). Initially, the population is initialized and evaluated, and two training sample sets are constructed using non-dominated relationships and congestion degree. Subsequently, the training samples and a double-archive operator guide the classifier to categorize more accurately. Finally, a model management strategy is proposed based on fuzzy classification preselection, which is set according to the predicted double-archive class labels and membership degrees. To validate the performance of the proposed algorithm, comparative experiments are conducted with classical algorithms in recent years on two groups of test problems encompassing various features. The experimental results demonstrate that the algorithm exhibits strong competitiveness in solving expensive high-dimensional multi-objective optimization problems.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-23
  • 最后修改日期:2024-08-27
  • 录用日期:2024-04-30
  • 在线发布日期: 2024-06-04
  • 出版日期:
文章二维码