基于多尺度3D-CNN-CBAM的空气质量指数时空预测研究
CSTR:
作者:
作者单位:

安徽大学

作者简介:

通讯作者:

中图分类号:

O 212

基金项目:


Spatio-temporal forecasting of air quality index based on multi-scale 3D-CNN-CBAM
Author:
Affiliation:

Anhui University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    空气质量指数(AQI)的变化具有时间和空间双重属性,同时呈现出非线性、非平稳、高噪声和高波动等特征,已有的AQI预测方法难以充分提取其时空特征并实现稳定的有效预测。本文对AQI时空数据进行有效标识和提取,通过构建三维空间张量,提出一种时空数据驱动下基于多尺度3D-CNN-CBAM模型的AQI预测方法。首先,在考虑本地与邻近地区之间空间域权重的基础上,运用互信息(MI)对AQI影响因素进行筛选。其次,利用多元经验模态分解(MEMD)方法和样本熵(SE)分别将历史数据和影响因素序列分解重构为更具规律性的高频序列、低频序列和趋势项。然后,根据分解得到的各地AQI数据、大气污染物浓度值和气象因素变量,构建子序列三维空间张量,以反映其时空特征演变。在此基础上,设计多尺度三维卷积注意力机制(3D-CNN-CBAM)网络模型对子序列进行预测,以有效提取AQI与其影响因素之间的关键时空关联性特征,并降低噪声信息对拟合效果的干扰。最后,集成得到目的地AQI预测值。将本文方法应用于长江三角洲城市群2019年-2023年日度AQI预测。结果表明,该方法适用于具有时空属性的空气质量指数预测,与现有方法相比具有更高的预测精度和适用性。

    Abstract:

    Air Quality Index (AQI) variations possess a dual temporal and spatial nature, while exhibiting nonlinear, non-stationary, high-noise and high-volatility characteristics. Existing AQI prediction methods struggle to fully extract its spatiotemporal features and achieve stable and effective forecasting. Therefore, a spatiotemporal data-driven AQI forecasting method based on multi-scale 3D-CNN-CBAM is proposed in this paper. The method can effectively identify and extract spatiotemporal information embedded in AQI data by constructing a 3D spatial tensor. First, considering the spatial domain weight between the local and neighboring regions, mutual information (MI) is applied to select influencing factors of AQI. Second, the multivariate empirical mode decomposition (MEMD) and sample entropy (SE) methods are used to decompose the historical data and the influencing factor series into more regular high-frequency series, low-frequency series, and trend terms, respectively. Third, based on the decomposed regional AQI data, atmospheric pollutant concentration values, and meteorological factor variables, subsequence three-dimensional spatial tensors are constructed to reflect their spatiotemporal evolution. Furthermore, a three-dimensional convolutional attention mechanism (3D-CNN-CBAM) network model is developed to predict the subsequence. This model effectively extracts key spatiotemporal correlation features between AQI and its influencing factors while reducing the interference of noise information on the fitting performance. Finally, the destination AQI prediction results are obtained by integrating the subsequence predictions. The proposed method is applied to the daily AQI prediction in the Yangtze River Delta urban agglomeration from 2019 to 2023. The results show that this method is suitable for predicting air quality index with spatiotemporal attributes and exhibits higher predictive accuracy and applicability compared to existing methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-23
  • 最后修改日期:2024-09-30
  • 录用日期:2024-06-02
  • 在线发布日期: 2024-07-08
  • 出版日期:
文章二维码