基于位置变换策略的多任务共生生物搜索算法求解冷链物流配送问题
CSTR:
作者:
作者单位:

湖州师范学院

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金青年基金(62102148); 浙江省教育厅一般项目(202351156)


A Position transform multitasking Symbiotic Organisms Search algorithm for vehicle routing problems in cold chain logistics
Author:
Affiliation:

Huzhou University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着生活水平和消费水平的提高, 人们对冷链物流配送需求与日俱增. 同时, 现实中的冷链物流公司往往需要同时承担多个运输任务. 如何优化冷链物流配送路径, 在保证客户满意度和冷藏品新鲜度的同时, 降低多个配送任务各项成本, 是当前急需解决的问题. 本文首先构建包含车辆使用、油耗、碳排放、制冷、货损、时间窗惩罚成本, 以及客户满意度等约束的冷链物流配送模型; 然后将多因子优化(MFO)信息共享框架与共生生物搜索(SOS)算法相结合, 并引入位置变换策略促进不同任务之间共享有效路径信息, 提出基于位置变换策略的多任务共生生物搜索(PTMSOS)算法; 最后将其用于求解多个冷链物流配送问题. 仿真实验表明, PTMSOS算法不仅能同时加快多个冷链物流配送问题的收敛速度, 还能显著降低多个配送任务的各项成本.

    Abstract:

    As living standards have improved and consumption levels have increased, the demand for cold chain logistics distribution has increased. In cold chain logistics companies, multiple transportation tasks must be performed simultaneously. Optimizing the distribution route to reduce logistics costs while ensuring customer satisfaction is an urgent concern that must be addressed. In this study, a mathematical model of cold chain logistics distribution was established. This model considers costs related to vehicle usage, fuel consumption, carbon emissions, refrigeration, cargo damage, time window penalties, and the constraint of customer satisfaction. Subsequently, a multifactoral optimization sharing framework was combined with the symbiotic organism search algorithm, and a position transformation strategy was introduced to promote the sharing of effective route information. Therefore, the position transform multitasking symbiotic organism search (PTMSOS) algorithm was proposed. Then PTMSOS was applied to solve a set of cold chain logistics distribution problems concurrently. Experimental results show that PTMSOS can accelerate the convergence speed of multiple cold chain logistics distribution problems and significantly reduce costs.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-17
  • 最后修改日期:2024-08-08
  • 录用日期:2024-08-11
  • 在线发布日期: 2024-09-01
  • 出版日期:
文章二维码