基于卫星遥感多光谱云图的生成式海上超短期光伏功率预测
CSTR:
作者:
作者单位:

1.东北大学;2.南京邮电大学

作者简介:

通讯作者:

中图分类号:

TM615

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),国家重点基础研究发展计划(973计划)


Ultra-short-term Prediction of Offshore Photovoltaic Power Based on Satellite Remote Sensing Muli-spectral Cloud Image
Author:
Affiliation:

Northeastern University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan),The National Basic Research Program of China (973 Program)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作为可再生能源装机的重要组成部分,海上光伏发电系统受制于特殊的气象环境和有限的远海气象监测条件,相比于陆地光伏预测,海上光伏预测需要精确掌握海域上空多变的云层状况并分析海洋气象波动特征。因此,本文提出一种基于卫星遥感数据的超短期功率预测方法。针对云层图像的不确定性和波动问题,采用遥感图像全波段的分段加权高斯融合与基于VAE的重构技术,提出了基于多光谱云图修正的海上功率模型,并使用双层GAN网络预测海上光伏出力,显著降低了预测误差。通过新加坡柔佛海峡电站数据验证,结果表明该模型能够高精度实现1小时及以上的超短期功率预测,精度较传统方法提高12%,增强了电网实时调度的可靠性和可再生能源并网消纳能力。

    Abstract:

    As an important part of renewable energy installed capacity, offshore PV power generation systems are subject to special meteorological environments and limited far-sea meteorological monitoring conditions. Compared with land-based PV prediction, offshore PV prediction needs to accurately grasp the variable cloud conditions over the sea and analyze the characteristics of marine meteorological fluctuations. Therefore, this paper proposes an ultra-short-term power prediction method based on satellite remote sensing data. Aiming at the uncertainty and fluctuation problems of cloud images, segment-weighted Gaussian fusion of remote sensing images in full wavelength band and VAE-based reconstruction technique are used to propose an offshore power model based on the correction of multispectral cloud maps, and a two-layer GAN network is used to predict offshore PV power, which significantly reduces the prediction error. Through the data validation of Singapore Johor Bahru Power Station, the results show that the model can realize the ultra-short-term power prediction of 1 hour and above with high accuracy, and the accuracy is improved by 12% compared with the traditional method, which enhances the reliability of real-time grid scheduling and the ability of grid-connected consumption of renewable energy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-23
  • 最后修改日期:2024-11-14
  • 录用日期:2024-08-29
  • 在线发布日期: 2024-09-09
  • 出版日期:
文章二维码