基于粒子群的正交超平行空间滤波及其在SOC估计中的应用
CSTR:
作者:
作者单位:

江南大学

作者简介:

通讯作者:

中图分类号:

TP293

基金项目:

国家高技术研究发展计划(863计划),国家自然科学基金项目(面上项目,重点项目,重大项目)


Particle swarm optimization based orthometric hyperparallel space f iltering and its application in SOC estimation
Author:
Affiliation:

Jiangnan University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan),The National High Technology Research and Development Program of China (863 Program)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对未知但有界噪声下的系统状态估计问题, 提出了基于粒子群优化的正交超平行空间滤波算法. 首先, 利用包裹系统状态可行集的超平行空间的顶点构建正交超平行空间, 并将其作为粒子群迭代寻优的真实状态搜索空间. 随后, 利用系统的观测值构造适应度函数, 判断粒子的优劣, 驱动粒子在正交超平行空间移动, 从而让粒子分布在真实状态附近. 最后, 将粒子群所处的不规则高似然区域用最小的外包正交超平行空间包裹, 通过线性规划求解该正交超平行空间的上下界, 获得系统状态的紧致包裹. 通过搭建的锂离子电池运行状态分析平台, 验证了本文所提算法的有效性和实用性.

    Abstract:

    For the state estimation problem of linear systems with unknown but bounded noise, a particle swarm optimization based orthometric hyperparallel space filtering is proposed. Firstly, we construct the orthometric hyperparallel space by the vertices of the hyperparallel space, that wraps the feasible set of the system state. Then, the real-state search space for the particle swarm iteration optimization method is studied. Subsequently, we construct a fitness function using the system"s observations to judge the performance of particles, by driving particles to move within the orthometric hyperparallel space, to make the particles distribute around the real state. The irregular high-likelihood region of the particle swarm with the smallest outer orthometric hyperparallel space is given to solve the upper and lower bounds of the orthometric hyperparallel space by linear programming, and a compact envelope of the system state is obtained. Finally, the effectiveness and practicality of the proposed algorithm in this paper are verified by a constructed lithium-ion battery operating state analysis platform.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-26
  • 最后修改日期:2024-07-15
  • 录用日期:2024-05-14
  • 在线发布日期: 2024-06-04
  • 出版日期:
文章二维码