基于改进Deeplabv3+模型的遥感影像地物语义分割方法研究
CSTR:
作者:
作者单位:

1.合肥工业大学电气与自动化工程学院;2.中国能源建设集团安徽省电力设计院有限公司

作者简介:

通讯作者:

中图分类号:

TP

基金项目:

国家自然科学基金项目(62073113、62003122); 安徽省自然科学基金项目(2208085UD15)


The research on semantic segmentation of remote sensing image about ground objects based on improved Deeplabv3+ model
Author:
Affiliation:

Hefei University of Technology

Fund Project:

the National Natural Science Foundation of China under Grants No.62073113, No.62003122, and the Natural Science Foundation of Anhui Province under Grants No. 2208085UD15.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文面向电力自动化领域, 针对在遥感影像关键地物信息提取过程中, 地物类别分布不均衡和不同域场景风格差异较大带来提取效果一般的问题, 采用了一种改进Deeplabv3+语义分割网络. 在主干网络ResNet101中使用IBN 模块, 用于增强模型对风格差异较大的遥感影像的泛化能力, 同时为了进一步提高模型的分割精度, 在网络中加入SE模块, 加强重要的通道信息, 缓解了信息丢失问题. 损失函数使用Dice+Focal的联合损失函数, Dice loss损失函数可以缓解类别分布不均衡对小目标提取的影响, Focal loss损失函数不仅可以使模型更关注分类困难的目标, 还可以改善Dice loss造成的网络训练的不稳定. 实验结果表明, 改进的Deeplabv3+与原Deeplabv3+模型相比, 将F1-Score提高了7. 78%, Intersection over Union 提高了5. 78%. 与其他主流语义分割模型(包括FCN、UNet、SegNet)相比, 改进Deeplabv3+在地物提取中也实现了更好的分割精度.

    Abstract:

    Aiming at the field of power automation, this paper considers the problem of general extraction effect caused by the unbalanced distribution of ground object categories and the large differences in scene styles in different domains in the process of extracting key feature information from remote sensing images, and an improved Deeplabv3+ semantic segmentation network is proposed. The instance-batch normalization (IBN) module is used in the backbone network ResNet101 to enhance the model’s generalization ability for remote sensing images with large differences in styles. The squeeze-and-excitation (SE) module is added to the network to strengthen important channel information, alleviating the problem of information loss. The joint loss function of Dice Focal is adopted as the loss function, and dice loss can alleviate the impact of imbalanced category distribution on the extraction of small targets. Focal loss can not only make the model pay more attention to objects that are difficult to classify, but it can also improve the instability of network training caused by dice loss. Experimental results show that in comparison with original Deeplabv3 model, the improved Deeplabv3 improves F1-Score by 7.78% and Intersection over Union (IoU) by 5.78%. In comparison with other mainstream semantic segmentation models (including FCN, UNet, and SegNet), the improved Deeplabv3+ also achieves better segmentation accuracy in ground objects extraction.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-26
  • 最后修改日期:2024-07-15
  • 录用日期:2024-05-09
  • 在线发布日期: 2024-06-04
  • 出版日期:
文章二维码