基于因果稀疏优化的运动想象脑电意图解码研究
CSTR:
作者:
作者单位:

1.燕山大学电气工程学院;2.东北大学机械工程与自动化学院;3.燕山大学机械工程学院

作者简介:

通讯作者:

中图分类号:

TN911.7; TH79; R318

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目);河北省自然科学基金;河北省全职引进国家高层次创新型人才科研项目;秦皇岛市科技计划项目


Research on Casual Sparse Optimization for Improving Motor Imagery Electroencephalogram Decoding
Author:
Affiliation:

1.Yanshan University Institute of Electrical Engineering;2.School of Mechanical Engineering and Automation Northeastern University;3.Yanshan University School of Mechanical Engineering

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan); Natural Science Foundation of Hebei Province; Full-time Introduction of National High-level Innovation Talents Research Project of Hebei Province; S&T Program of Qinhuangdao City.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对运动想象脑电信号解码问题提出了因果稀疏特征优化方法,旨在选择因果判别特征以增强其解码准确性。首先,利用希尔伯特-黄变换(Hilbert-Huang Transform, HHT)提取脑电信号各通道中的边际谱能量。然后,运用样本重加权去相关性算子(Sample Reweighted Decorrelation Operator, SRDO)对特征进行加权优化,以消除干扰及冗余特征与识别运动想象的判别特征间的虚假关联。在此基础上,利用亲和传播(Affinity Propagation, AP)聚类算法开发特征在空间分布中的潜在关系,并结合迭代稀疏分组Lasso (iterative Sparse-Group Lasso, iSGL),通过同时考虑组内与组间特征的重要性,对特征进行优化,以提升运动想象脑电信号的解码准确率。最后,利用支持向量机(Support Vector Machine, SVM)在二分类运动想象实验数据集上进行了5折交叉验证,实验结果显示其平均准确率达到了92.30%,与原特征相比提升近4%。此外,通过与不同方法的对比实验,也充分证明了本研究提出方法的优越性,表明该方法可以作为一种推动脑-机接口发展的有力解决方案。

    Abstract:

    To address the challenge of decoding motor imagery-based electroencephalography (EEG) signals, a novel casual sparse optimization method was proposed, focusing on selecting casual discriminative features to improve decoding performance. Specifically, The Hilbert-Huang transform (HHT) extracted marginal spectral energy from EEG channels. And the Sample Reweighted Decorrelation Operator (SRDO) optimized features by weighting, eliminating spurious relationships among interfering features and discriminative features crucial for the decoding of motor imagery patterns. Particularly, the Affinity Propagation (AP) clustering algorithm identified potential relationships among feature spatial distributions. And the iterative Sparse-Group Lasso (iSGL) optimized features by considering features’ importance with intra- and inter-group to improve the decoding accuracy of motor imagery-based EEG signals. A 5-fold cross-validation experiment on a binary classification motor imagery dataset using the Support Vector Machine (SVM) showed an average accuracy of 92.30%, nearly 4% higher than the original features. Comparative experiments demonstrated the superiority of the proposed method, suggesting its effectiveness for advancing brain-computer interfaces.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-28
  • 最后修改日期:2024-07-20
  • 录用日期:2024-06-06
  • 在线发布日期: 2024-07-03
  • 出版日期:
文章二维码