超启发蚁群优化算法求解带柔性时间窗的绿色两级多周期车辆路径问题
CSTR:
作者:
作者单位:

昆明理工大学信息工程与自动化学院

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金项目(62173169, 61963022),云南省基础研究重点项目(202201AS070030)


Hyper -heuristic ant colony optimization algorithm for green two-echelon multi-period vehicle routing problem with the flexible time window
Author:
Affiliation:

School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming

Fund Project:

the National Natural Science Foundation of China (62173169 and 61963022) and the Basic Research Key Project of Yunnan Province (202201AS070030)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对带柔性时间窗的绿色两级多周期车辆路径问题 (G2E-MPVRPFTW), 建立同时以最小化碳排放量和最大化客户满意度为目标的数学模型, 提出一种结合 K-means 带时间窗聚类 (KCTW) 的超启发蚁群优化算法(HHACOA) 进行求解. 首先, 根据 G2E-MPVRPFTW 大规模、多约束、强耦合的复杂特性, 采用 KCTW 将该问题分解为多个子问题, 以降低问题的求解复杂度. 其次, 使用 HHACOA 求解分解后的各子问题, 并把这些子问题的解合并便可获得原问题 G2E-MPVRPFTW 的解. HHACOA 在高层策略域生成 9 种邻域操作的不同排列, 且采用蚁群优化算法 (ACOA) 对优质排列信息进行学习, 并基于重构的转移概率矩阵生成新的排列, 以有效引导搜索到达优质解集中的区域;HHACOA 在低层问题域利用启发式规则和随机方法生成初始种群, 并将高层产生的每个排列作为一种算法, 作用于种群中的每个个体, 以实现在解空间更多不同区域进行搜索.

    Abstract:

    For dealing with the green two-echelon multi-period vehicle routing problem with flexible time windows (G2E-MPVRPFTW), this paper establishes a mathematical model with the objectives of minimizing the carbon emissions and maximizing the customer satisfaction, and proposes a hyper-heuristic ant colony optimization algorithm (HHACOA) which combines the K-means clustering with time windows (KCTW). Firstly, according to the complex characteristics of G2E-MPVRPFTW with the large scale, multi constraints, and strong coupling, KCTW is adopted to decompose the problem into multiple subproblems. Thereby, the complexity of solving the problem is reduced. Secondly, HHACOA is used to solve the decomposed subproblems, and the solution of the original problem G2E-MPVRPFTW can be obtained by merging the solutions of these subproblems. In the policy domain of the upper layer, HHACOA generates different permutations of 9 neighborhood operations, and uses ant colony optimization algorithm (ACOA) to learn high-quality permutation information. Based on the reconstructed transition probability matrix, new permutations are generated to effectively guide the search to reach areas where the high-quality solutions are concentrated. In the problem domain of the lower layer, HHACOA utilizes the heuristic rules and the random method to generate the initial population, and uses each permutation generated at the upper layer as an algorithm to act on each individual in the population, so as to search more different regions in the solution space.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-28
  • 最后修改日期:2024-07-22
  • 录用日期:2024-07-24
  • 在线发布日期: 2024-09-01
  • 出版日期:
文章二维码