基于自适应特征融合机制的可修正RGBT目标跟踪算法
CSTR:
作者:
作者单位:

内蒙古工业大学

作者简介:

通讯作者:

中图分类号:

TP394.41

基金项目:

国家自然科学基金(62241309);内蒙古科技计划项目(2021GG0164);内蒙古自然科学基金(2022MS06018,2021MS06018); 高校院所协同创新项目(XTCX2023-16)


A modifiable RGBT target tracking algorithm based on adaptive feature fusion mechanism
Author:
Affiliation:

Inner Mongolia University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统RGBT目标跟踪算法网络精确度低,鲁棒性差,以及在目标尺度变化大和长时跟踪过程中存在目标丢失无法找回等问题,提出一种新的基于自适应特征融合机制的可修正RGBT目标跟踪算法(Siamese Meta- Storage Tracker)。首先,引入一种特征层与模态间双自适应融合机制(Adaptive dual-modal fusion module),充分利用两模态间的互补信息,增强RGB与红外特征的跨模态融合;其次,设计一种后端时序约束回归模块(Timing Constraints module),利用上一帧信息对 IOU 计算及边界框回归进行约束,有效减少相似物干扰;最后,提出一种基于元学习的在线模板更新机制(Meta- Storage),对回归阶段得分较高的模板图像进行更新存储,解决长时跟踪中累计误差和目标难以找回问题。采用权威的目标跟踪数据集GTOT, RGBT234和VOT-RGBT2019进行算法验证,本文所提方法均可以取得极具竞争力的结果,将算法移植到嵌入式设备Jetson Xavier NX 上进行性能测试,结果表明本文算法运行速度达到29帧/s,相比当前流行的多种RGBT算法,具有更为全面的跟踪性能,且能有效解决相似物干扰、目标丢失难找回等问题。

    Abstract:

    In order to solve the problems of low network accuracy and poor robustness of traditional RGBT target tracking algorithms, as well as the problems of target loss and unretrieval in the process of large target scale change and long-term tracking, a new modifiable RGBT target tracking algorithm based on adaptive feature fusion mechanism (Siamese Meta-Storage Tracker) was proposed. Firstly, an adaptive dual-modal fusion module is introduced to make full use of the complementary information between the two modalities to enhance the cross-modal fusion of RGB and infrared features. Secondly, a back-end timing constraints regression module was designed, which used the information of the previous frame to constrain the IOU calculation and bounding box regression, which effectively reduced the interference of similarities. Finally, an online template update mechanism based on meta-learning (Meta-Master) was proposed to update and store the template images with high scores in the regression stage, so as to solve the problems of cumulative error and difficult target recovery in long-term tracking. Using the authoritative object tracking datasets GTOT, RGBT234 and VOT-RGBT2019 for algorithm verification, the proposed method can achieve very competitive results, and the algorithm is transplanted to the embedded device Jetson Xavier NX for performance testing, the results show that the proposed algorithm runs at a speed of 29 frames/s, which has more comprehensive tracking performance than the current popular RGBT algorithms, and can effectively solve the problem of similar interference, Problems such as the difficulty of retrieving the lost target.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-29
  • 最后修改日期:2024-09-01
  • 录用日期:2024-09-02
  • 在线发布日期: 2024-09-07
  • 出版日期:
文章二维码