从仿真到现实的多层级虚实域适应故障诊断方法
CSTR:
作者:
作者单位:

重庆大学

作者简介:

通讯作者:

中图分类号:

TH165

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Simulation-to-reality Fault Diagnosis Based on Multi-Level Joint Adaptive Network in Virtual and Real Domains
Author:
Affiliation:

重庆大学

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对仿真数据驱动的迁移故障诊断方法中虚实数据域差异过大带来的负迁移问题,提出了一种基于虚实域多层级联合适应网络(virtual-real domain multi-level Joint adaption network , VDMJAN)的故障仿真到现实诊断方法?论文以滚动轴承为分析对象,结合实际工况建立了基于非规则损伤形态的轴承故障动力学仿真模型,生成了测试实体轴承的故障虚拟信号并结合故障机理进行了可仿真信号可迁移性模式分析;构建了不同尺寸卷积核的深度卷积神经网络对虚实域信号进行了粗细粒度特征提取,增强了用于状态辨识特征的域不变性与全面性;采用多分类器并行输出概率融合法对测试样本进行伪标签标注,对仿真与实测样本进行了不同层级的领域特征精细对齐,实现了虚实数据的跨域一致性;引入了VDMJAN训练的有效性损失保证了多分类器对目标域实测样本状态识别确定性与一致性,并采用筛选的类对齐实测数据对分类器进行校正微调,消除了分类器对仿真样本的偏向性,以更好的实现适应目标域测试样本的分类任务。两个实验分析结果表明,提出的VDMJAN以单源域的轴承故障仿真样本为驱动,在实测故障样本标签信息完全缺失的情况下,能够有效实现从仿真到现实的故障诊断,在特殊环境下样本稀缺的设备故障诊断领域具有较好的应用前景?

    Abstract:

    Aiming at the serious negative transfer brought about by the excessive domain discrepancy of virtual-real data in the simulated data-driven transfer fault diagnosis method, this paper proposes an unsupervised fault diagnosis method based on a virtual-to-real domain multi-level Joint adaption network (VDMJAN). First, the dynamic simulation model of various types of bearing faults with irregular patterns was established, and the virtual signals of the faults under real working conditions were generated and analyzed in terms of transportability modes in combination with the fault mechanism. Then, deep convolutional neural networks with different sizes of convolutional kernels are constructed to perform feature extraction at different granularities for virtual and real domain signals, which enhances the domain invariance and comprehensiveness of the features used for state discrimination. Finally, based on the pseudo-label labeling of the simulated samples using the probabilistic fusion of parallel outputs from multiple classifiers, the simulated and measured samples are finely aligned with domain features at different levels to achieve cross-domain consistency of the real and virtual data. The introduction of the effectiveness loss of VDMJAN training guarantees the certainty and consistency of the multi-classifier recognition of the state of real samples in the target domain. The class-aligned measured samples are filtered and used to calibrate the classifier to better adapt to the target domain classification task. The results of two experimental analyses show that the proposed VDMJAN, driven by bearing fault simulation data in a single source domain, can realize effective simulation-reality fault diagnosis and has good application prospects in the field of equipment fault diagnosis where samples are scarce in special environments.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-13
  • 最后修改日期:2024-06-20
  • 录用日期:2024-06-22
  • 在线发布日期: 2024-07-28
  • 出版日期:
文章二维码