基于改进Transformer神经网络的电潜泵故障诊断方法
CSTR:
作者:
作者单位:

中国石油大学(北京)

作者简介:

通讯作者:

中图分类号:

TP206.3? TP18

基金项目:

中国博士后科学基金,国家自然科学基金项目(面上项目,重点项目),北京市自然科学基金面上项目,中国石油大学(北京)科研基金资助


Improved Transformer Neural Network Based Electrical Submersible Pump Fault Diagnosis Method
Author:
Affiliation:

China University of Petroleum Beijing

Fund Project:

China Postdoctoral Science Foundation,The National Natural Science Foundation of China (General Program, Key Program),Beijing Natural Science Foundation General Program,Science Foundation of China University of Petroleum Beijing

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电潜泵故障诊断对于确保安全可靠采油至关重要,但电潜泵数据呈现出的多变量、非线性和动态变化等复杂特性为该任务带来了严峻挑战。近年来,深度学习在复杂数据特征提取方面表现出的强大能力催生了一系列基于神经网络的电潜泵故障诊断方法。然而,多数方法忽略了电潜泵数据的动态特性及长时依赖特征提取困难的问题。针对上述问题,提出一种多变量时序标记Transformer神经网络实现电潜泵故障诊断。该模型设计了新的多变量时间序列标记策略,继承了引入多头注意力机制和残差连接的传统Transformer神经网络编码器在长时依赖特征提取方面的优势,用前向神经网络替代了传统Transformer神经网络解码器以简化模型复杂度。通过对油田现场故障数据分析,验证了该方法的有效性。实验结果表明,所提方法实现了10类电潜泵故障的精确诊断,相比流行的深度学习方法诊断性能更优。

    Abstract:

    Fault diagnosis of electric submersible pumps is crucial to ensure safe and reliable oil recovery, but the complex characteristics of electric submersible pump data, such as multivariate, nonlinear, and dynamic changes, pose a great challenge to this task. In recent years, the powerful capabilities of deep learning in feature extraction of complex data have spawned a series of neural network-based fault diagnosis methods for electric submersible pumps. However, most of the methods ignore the dynamic characteristics of the electric submersible pump data as well as the difficulty of long-term dependency feature extraction. To address the above issues, a multivariate time-series tokenized Transformer neural network is proposed for fault diagnosis of electric submersible pumps. This model designs a new multivariate time series tokenization strategy and inherits the advantages of the traditional Transformer neural network"s encoder which introduces multi-head attention mechanisms and residual connections in long-term dependency feature extraction. In addition, this model replaces the traditional Transformer neural network"s decoder with a forward neural network to simplify the model"s complexity. The effectiveness of the method is verified by analyzing the field"s faulty data. The experimental results show that the proposed method can accurately diagnose ten types of electric submersible pump faults, and it outperforms the popular deep learning methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-14
  • 最后修改日期:2024-11-13
  • 录用日期:2024-09-12
  • 在线发布日期: 2024-09-24
  • 出版日期:
文章二维码