基于自适应双阶段分级均衡的约束高维多目标进化算法
CSTR:
作者:
作者单位:

南昌航空大学

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


A Constrained Many-Objective Evolutionary Algorithm Based on Adaptive Two-stage Hierarchical Equalization
Author:
Affiliation:

Nanchang Hangkong University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高约束进化算法处理各种不同约束高维多目标优化问题的精确性和鲁棒性,本文提出一种基于自适应双阶段分级均衡的约束高维多目标进化算法.该算法将多阶段优化方法和混合约束处理技术相结合,首先通过动态个体支配关系设计分段时机,并自适应地切换进化过程的目标优化和约束处理两个阶段;然后依据种群进化信息构建了混合分级均衡准则,利用自适应随机排序法在不可行状态选择个体,并在半可行状态下定义了半可行性准则以选择个体,从而保持可行解和不可行解的动态均衡,提高种群的收敛性、分布性和多样性.标准测试函数集C_DTLZ、DC_DTLZ和MW的大量实验表明了本文算法对不同目标维数以及狭窄、离散或互不连通可行域的约束高维多目标问题均能取得较好的收敛性能和稳定性,相对于MOEA/D-FCHT、MOEA/D-2WA、PPS、ToP和Trip五种先进方法,具有更高的收敛精度和更好的鲁棒性.

    Abstract:

    To enhance the precision and robustness of constrained evolutionary algorithms for handling various constrained many-objective problems, this paper proposes a constrained many-objective evolutionary algorithm based on adaptive two-stage hierarchical equilibrium. The algorithm combines a multi-stage optimization approach with hybrid constraint handling techniques. Initially, it designs segmentation timing based on dynamic individual dominance relationships and adaptively switches between the objective function-focused phase and the constraint handling-focused phase. Subsequently, it constructs a hybrid hierarchical equilibrium criterion based on population evolution information, employing an adaptive random ranking method to select individuals in infeasible situations and defining a semi-feasibility criterion for selecting individuals in semi-feasible situations. This approach maintains a dynamic balance between feasible and infeasible solutions, improving population convergence, distribution, and diversity. Extensive experiments on standard test function sets C_DTLZ, DC_DTLZ, and MW show that the proposed algorithm achieves better convergence performance and stability across different objective dimensions and various constrained high-dimensional multi-objective problems with narrow, discrete, or disconnected feasible regions. Compared to five advanced methods, namely MOEA/D-FCHT, MOEA/D-2WA, PPS, ToP, and Trip, the proposed algorithm demonstrates higher convergence accuracy and better robustness.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-20
  • 最后修改日期:2024-09-27
  • 录用日期:2024-09-28
  • 在线发布日期: 2024-10-25
  • 出版日期:
文章二维码