基于高程邻域信息的FCM算法管网漏损控制策略
CSTR:
作者:
作者单位:

太原理工大学

作者简介:

通讯作者:

中图分类号:

TU991.33

基金项目:

山西省基础研究计划自然科学研究面上项目


Network leakage control Strategy based on high range neighborhood Information based on FCM algorithm
Author:
Affiliation:

Taiyuan University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘 要:供水管网的漏损控制与监测难题普遍存在,传统基于压力敏感度对管网进行分区并布设压力传感器的方法仅考虑了管网节点压力变化情况,并未结合管网自身高程信息,减压阀调压时局部压力过高效果不明显.针对此问题,首先将管网节点压力敏感度与高程差耦合,将FCM算法中目标函数中的距离定义为特征距离与高程距离之和,建立了包含高程邻域信息的新的聚类目标函数,实现节点分区聚类.并在在分区入口处布设减压阀,采用GA求解阀后压力实现分区内各节点压力的实时精细化调控,联合智能算法与经验法在各个分区布置压力传感器,并通过漏损模型验证传感器布置的合理性.结果表明:分四个区的方案将BIN管网的漏损率降低至6.55 %,相较初始管网降低了22.79 %,联合智能算法与经验法进行传感器布设对管网漏损的监测效果显著,因此,引入高程信息的FCM算法管网漏损控制优化策略具有有效性及优越性.

    Abstract:

    Abstract:Leakage control and monitoring problems of water supply pipe network are common. The traditional method of zoning network based on pressure sensitivity and deploying pressure sensor only considers the pressure changes of network nodes, without combining the elevation information of network itself, and the effect of excessive local pressure during pressure regulation by pressure reducing valve is not obvious. To solve this problem, the pressure sensitivity of network nodes is coupled with elevation difference, and the distance in the objective function of FCM algorithm is defined as the sum of feature distance and spatial distance. A new clustering objective function containing elevation information is established to realize node partitioning clustering. The pressure reducing valve is arranged at the entrance of the partition, and the GA algorithm is used to solve the pressure behind the valve to achieve real-time fine control of the pressure of each node in the partition. The pressure sensor is arranged in each partition jointly with the intelligent algorithm and the empirical method, and the rationality of the sensor arrangement is verified by the leakage model. The results show that the scheme divided into four zones reduces the leakage rate of BIN network to 6.55%, which is 22.79% lower than that of the initial pipe network. The sensor layout combined with intelligent algorithm and empirical method has a remarkable effect on the monitoring of network leakage, and finally proves that the optimization strategy of network leakage control based on FCM algorithm introducing elevation information is effective and superior.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-21
  • 最后修改日期:2024-07-08
  • 录用日期:2024-07-12
  • 在线发布日期: 2024-07-25
  • 出版日期:
文章二维码