基于可变障碍函数和强化学习的预设性能最优安全跟踪控制
CSTR:
作者:
作者单位:

辽宁科技大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

吉林大学汽车仿真与控制国家重点实验室开放基金项目(20210219);辽宁科技大学研究生科技创新项目 (LKDYC202313)


Prescribed Performance Optimal Safe Tracking Control Based on Variable Barrier Function and Reinforcement Learning
Author:
Affiliation:

University of Science and Technology Liaoning

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究了一类具有未知初始跟踪条件的非线性系统预设性能最优安全跟踪控制问题.开发了一个基于可变障碍函数的性能约束控制设计的新方法.针对系统实际输出约束突变到突然解除而引起的系统跟踪的安全问题,提出一个新的安全边界自调整规律,进一步更新了已有的安全边界保护方法.同时,采用演员-评论家结构的强化学习算法来优化系统的控制输入.基于此,设计了系统带预设性能约束的安全跟踪控制器.该控制器可以保证在初始跟踪条件未知的情况下系统的安全跟踪控制和预设有限时间控制性能,并解决了输出约束突变解除之后的输出快速跟踪原期望轨迹的问题.最后,仿真验证了该方法的有效性.

    Abstract:

    The optimal safe tracking control problem with prescribed performance is investigated for a class of nonlinear systems with unknown initial tracking condition. A new method for performance constraint control design is developed based on a variable barrier function. Aiming to the safe tracking problem of systems caused by the sudden changes of the actual output constraints and the release of the sudden changes, a novel secure boundary self-adjustment law (SBSAL) is proposed, the existing secure boundary protection method (SBPM) is further updated. Meanwhile, the reinforcement learning (RL) optimal method with actor-critic (AC) architecture is used to optimize the control input of system. Based on this, a safe tracking controller with prescribed performance constraint is designed for the system. The controller can ensure the safe tracking control and prescribed finite-time control performance of the system with unknown initial tracking condition, and solve the problem that the output after the sudden changes are relieved fast tracks the original desired trajectory. Finally, the effectiveness of this proposed method is verified by simulations.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-28
  • 最后修改日期:2024-11-14
  • 录用日期:2024-09-26
  • 在线发布日期: 2024-10-12
  • 出版日期:
文章二维码